Projection-based monotone embedded discrete fracture method for flow and transport in porous media

[1]  Gisbert Stoyan,et al.  On maximum principles for monotone matrices , 1986 .

[2]  Daniil Svyatskiy,et al.  Minimal stencil finite volume scheme with the discrete maximum principle , 2012 .

[3]  L. Durlofsky,et al.  An Efficient Discrete-Fracture Model Applicable for General-Purpose Reservoir Simulators , 2004 .

[4]  S. Begg,et al.  Assigning Effective Values to Simulator Gridblock Parameters for Heterogeneous Reservoirs , 1989 .

[5]  L. Durlofsky Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .

[6]  J. E. Warren,et al.  The Behavior of Naturally Fractured Reservoirs , 1963 .

[7]  Bradley T. Mallison,et al.  Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem , 2017, J. Comput. Phys..

[8]  Hadi Hajibeygi,et al.  Projection-based Embedded Discrete Fracture Model (pEDFM) , 2017 .

[9]  Nonlinear finite volume method with discrete maximum principle for the two-phase flow model , 2016 .

[10]  Kamy Sepehrnoori,et al.  Development of a Coupled Dual Continuum and Discrete Fracture Model for the Simulation of Unconventional Reservoirs , 2013, ANSS 2013.

[11]  Seong H. Lee,et al.  Efficient Field-Scale Simulation of Black Oil in a Naturally Fractured Reservoir Through Discrete Fracture Networks and Homogenized Media , 2008 .

[12]  Jiamin Jiang,et al.  An improved projection-based embedded discrete fracture model (pEDFM) for multiphase flow in fractured reservoirs , 2017 .

[13]  H. Kazemi,et al.  NUMERICAL SIMULATION OF WATER-OIL FLOW IN NATURALLY FRACTURED RESERVOIRS , 1976 .

[14]  Milind Deo,et al.  Finite element, discrete‐fracture model for multiphase flow in porous media , 2000 .

[15]  D. Waldren,et al.  A Multicomponent Isothermal System for Efficient Reservoir Simulation , 1983 .

[16]  Kirill D. Nikitin,et al.  Monotone embedded discrete fractures method for flows in porous media , 2020, J. Comput. Appl. Math..

[17]  Yu. V. Vassilevski,et al.  A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes , 2009 .

[18]  G. I. Barenblatt,et al.  Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata] , 1960 .

[19]  Bradley T. Mallison,et al.  A compact multipoint flux approximation method with improved robustness , 2008 .

[20]  A. Firoozabadi,et al.  Control‐volume method for numerical simulation of two‐phase immiscible flow in two‐ and three‐dimensional discrete‐fractured media , 2004 .

[21]  Hao Liu,et al.  A modified projection-based embedded discrete fracture model (pEDFM) for practical and accurate numerical simulation of fractured reservoir , 2020 .

[22]  J. J. Walsh,et al.  Measurement and characterisation of spatial distributions of fractures , 1993 .

[23]  Daniil Svyatskiy,et al.  Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes , 2009, J. Comput. Phys..

[24]  Kamy Sepehrnoori,et al.  Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs , 2014 .

[25]  L. Durlofsky,et al.  Upscaling Discrete Fracture Characterizations to Dual-Porosity, Dual-Permeability Models for Efficient Simulation of Flow With Strong Gravitational Effects , 2008 .

[26]  N. P. Christensen,et al.  Variations in fracture system geometry and their implications for fluid flow in fractures hydrocarbon reservoirs , 1999, Petroleum Geoscience.

[27]  Patrick Jenny,et al.  A hierarchical fracture model for the iterative multiscale finite volume method , 2011, J. Comput. Phys..

[28]  Alessio Fumagalli,et al.  Benchmarks for single-phase flow in fractured porous media , 2017, ArXiv.