Enhanced performance of perovskite solar cell via up-conversion YLiF4:Yb, Er nanoparticles

[1]  M. Mohamed,et al.  Comparative study of the optical, structural, and solar cell performance of (MAPbBr3)x(FAPbI3)1-x(MACl)0.33 mixed perovskite solar cells: With and without the passivation layer , 2023, Optical Materials.

[2]  M. Mohamed,et al.  Effect of Li-salt additives on the optical features and solar cell performance of Cs0.05FA0.85MA0.10Pb(I0.90Br0.10)3 perovskite solar cells , 2023, Optical Materials.

[3]  Pingqi Gao,et al.  Ultraviolet Photocatalytic Degradation of Perovskite Solar Cells: Progress, Challenges, and Strategies , 2022, Advanced Energy and Sustainability Research.

[4]  P. Hemmer,et al.  Lithium-Based Upconversion Nanoparticles for High Performance Perovskite Solar Cells , 2021, Nanomaterials.

[5]  A. Shaker,et al.  Design of lead-free perovskite solar cell using Zn1-xMgxO as ETL: SCAPS device simulation , 2021 .

[6]  H. Song,et al.  Rare earth doping in perovskite luminescent nanocrystals and photoelectric devices , 2021, Nano Select.

[7]  S. Chattopadhyay,et al.  Up-conversion hybrid nanomaterials for light- and heat-driven applications , 2021, Progress in Materials Science.

[8]  P. Hemmer,et al.  Photostable and Small YVO4:Yb,Er Upconversion Nanoparticles in Water , 2021, Nanomaterials.

[9]  P. Hemmer,et al.  Engineering Red-Enhanced and Biocompatible Upconversion Nanoparticles , 2021, Nanomaterials.

[10]  M. Haase,et al.  LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with luminescence decay times similar to YLF laser crystals and the upconversion quantum yield of the Yb,Er doped nanocrystals , 2020, Nano Research.

[11]  S. Mali,et al.  Making air-stable all-inorganic perovskite solar cells through dynamic hot-air , 2020 .

[12]  Wenwu Wang,et al.  Efficient wide-bandgap perovskite solar cells enabled by doping a bromine-rich molecule , 2020, Nanophotonics.

[13]  Xiaodang Zhang,et al.  NiOx/Spiro Hole Transport Bilayers for Stable Perovskite Solar Cells with Efficiency Exceeding 21% , 2020 .

[14]  R. Schropp,et al.  Inorganic halide perovskite materials and solar cells , 2019, APL Materials.

[15]  G. Jung,et al.  Plasmon enhanced up-conversion nanoparticles in perovskite solar cells for effective utilization of near infrared light. , 2019, Nanoscale.

[16]  R. Xiong,et al.  Two-dimensional Organic-Inorganic Perovskite Ferroelectric Semiconductor with the Fluorinated Aromatic Spacers. , 2019, Journal of the American Chemical Society.

[17]  T. Edvinsson,et al.  How to Make a Most Stable Perovskite Solar Cell , 2019, Matter.

[18]  Sumei Huang,et al.  Highly bright Li(Gd,Y)F4:Yb,Er upconverting nanocrystals incorporated hole transport layer for efficient perovskite solar cells , 2019, Applied Surface Science.

[19]  Jihuai Wu,et al.  High performance perovskite solar cells based on β-NaYF4:Yb3+/Er3+/Sc3+@NaYF4 core-shell upconversion nanoparticles , 2019, Journal of Power Sources.

[20]  Williams,et al.  Perovskite Thin Film Materials Stabilized and Enhanced by Zinc(II) Doping , 2019, Applied Sciences.

[21]  Zhigang Zang,et al.  Two-dimensional lead-free hybrid halide perovskite using superatom anions with tunable electronic properties , 2019, Solar Energy Materials and Solar Cells.

[22]  Jihuai Wu,et al.  Improved photovoltaic performance of perovskite solar cells by utilizing down-conversion NaYF4:Eu3+ nanophosphors , 2019, Journal of Materials Chemistry C.

[23]  Ligang Wang,et al.  A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells , 2019, Science.

[24]  G. Murugadoss,et al.  Formamidinium lead iodide perovskite: Structure, shape and optical tuning via hydrothermal method , 2018, Materials Letters.

[25]  Bo Yang,et al.  Performance improvement of perovskite solar cells through enhanced hole extraction: The role of iodide concentration gradient , 2018, Solar Energy Materials and Solar Cells.

[26]  Xiao Fan,et al.  Surfaces modification of MAPbI3 films with hydrophobic β-NaYF4:Yb,Er up-conversion ultrathin layers for improving the performance of perovskite solar cells , 2018, Applied Surface Science.

[27]  Rui Zhu,et al.  Enhanced photovoltage for inverted planar heterojunction perovskite solar cells , 2018, Science.

[28]  Y. Mao,et al.  Enhanced Power Conversion Efficiency of Perovskite Solar Cells with an Up-Conversion Material of Er3+-Yb3+-Li+ Tri-doped TiO2 , 2018, Nanoscale Research Letters.

[29]  M. Grätzel,et al.  Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells , 2018 .

[30]  Jianfeng Chen,et al.  High-efficiency near-infrared enabled planar perovskite solar cells by embedding upconversion nanocrystals. , 2017, Nanoscale.

[31]  Zhigang Zang,et al.  Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer , 2017 .

[32]  Hongwei Song,et al.  Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells , 2017 .

[33]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[34]  J. Zhang,et al.  Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells , 2016 .

[35]  J. Bisquert,et al.  Dynamic Phenomena at Perovskite/Electron-Selective Contact Interface as Interpreted from Photovoltage Decays , 2016 .

[36]  W. Que,et al.  Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light. , 2016, Nanoscale.

[37]  J. Dupont,et al.  Photocatalytic activity of Li-doped TiO2 nanoparticles: Synthesis via ionic liquid-assisted hydrothermal route , 2016 .

[38]  Saif A. Haque,et al.  Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells , 2016 .

[39]  P. Pikhitsa,et al.  Trapped charge-driven degradation of perovskite solar cells , 2016, Nature Communications.

[40]  Zhiqun Lin,et al.  Monodisperse Dual-Functional Upconversion Nanoparticles Enabled Near-Infrared Organolead Halide Perovskite Solar Cells. , 2016, Angewandte Chemie.

[41]  Jiulin Wang,et al.  A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries , 2016, Scientific Reports.

[42]  F. Giordano,et al.  Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells , 2016, Nature Communications.

[43]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[44]  S. Haque,et al.  The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. , 2015, Angewandte Chemie.

[45]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[46]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[47]  Yong Qiu,et al.  Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination , 2014 .

[48]  Wen-Hau Zhang,et al.  Organolead halide perovskite:A rising player in high-efficiency solar cells , 2014 .

[49]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[50]  A. Dauletbekova,et al.  Cathodoluminescence and Radiation-Induced Absorption in YLiF4 Crystals in Excitation by Electron Pulse , 2014 .

[51]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[52]  S. Yousif,et al.  Structural, Morphological and Optical Characterization of SnO2:F Thin Films Prepared by Chemical Spray Pyrolysis , 2013, International Letters of Chemistry, Physics and Astronomy.

[53]  M. Alagar,et al.  Titanium dioxide (TiO2) Nanoparticles XRD Analyses: An Insight , 2013, 1307.1091.

[54]  J. Boilot,et al.  High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level , 2010 .

[55]  H Zhao,et al.  Preparation and up-conversion fluorescence of rare earth (Er3+ or Yb3+/Er3+)-doped TiO2 nanobelts , 2010 .

[56]  S. Kapphan,et al.  Pulsed electron beam excited transient absorption in SrTiO3 , 2002 .

[57]  Y. Mao,et al.  β-NaYF 4 :Yb 3+ , Tm 3+ @TiO 2 core-shell nanoparticles incorporated into the mesoporous layer for high efficiency perovskite solar cells , 2018 .

[58]  M. I. Khan,et al.  Structural, electrical and optical properties of multilayer TiO 2 thin films deposited by sol–gel spin coating , 2017 .