Porous single-crystalline palladium nanoparticles with high catalytic activities.

Palladium's pore cousin: a facile approach is described for the size-controlled preparation of porous single-crystalline Pd nanoparticles. These porous Pd nanoparticles exhibit size-independent catalytic activities for the Suzuki coupling and are more active than commercial Pd/C catalysts.

[1]  Yusuke Yamauchi,et al.  Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. , 2011, Journal of the American Chemical Society.

[2]  Yusuke Yamada,et al.  Nanocrystal bilayer for tandem catalysis. , 2011, Nature chemistry.

[3]  Dingsheng Wang,et al.  Bimetallic Nanocrystals: Liquid‐Phase Synthesis and Catalytic Applications , 2011, Advanced materials.

[4]  Weiyang Li,et al.  Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump. , 2011, Nano letters.

[5]  Tian Ming,et al.  Heteroepitaxial growth of high-index-faceted palladium nanoshells and their catalytic performance. , 2011, Journal of the American Chemical Society.

[6]  R. Li,et al.  A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal. , 2011, Angewandte Chemie.

[7]  Younan Xia,et al.  Metall‐Nanokristalle mit hochverzweigten Morphologien , 2011 .

[8]  Younan Xia,et al.  Metal nanocrystals with highly branched morphologies. , 2011, Angewandte Chemie.

[9]  Michael H. Huang,et al.  Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. , 2010, Journal of the American Chemical Society.

[10]  Y. Yamauchi,et al.  Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell. , 2010, Journal of the American Chemical Society.

[11]  R. Jin,et al.  A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. , 2010, Angewandte Chemie.

[12]  Shenlin Huang,et al.  Cationic palladium(II) catalysis: C-H activation/Suzuki-Miyaura couplings at room temperature. , 2010, Journal of the American Chemical Society.

[13]  H. Zeng,et al.  Controllable polyol synthesis of uniform palladium icosahedra: effect of twinned structure on deformation of crystalline lattices. , 2009, Angewandte Chemie.

[14]  Y. Yamauchi,et al.  Block copolymer mediated synthesis of dendritic platinum nanoparticles. , 2009, Journal of the American Chemical Society.

[15]  Michael H. Huang,et al.  Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts. , 2009, Journal of the American Chemical Society.

[16]  Younan Xia,et al.  Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction , 2009, Science.

[17]  Hong Yang,et al.  Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. , 2009, Journal of the American Chemical Society.

[18]  G. Somorjai,et al.  Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. , 2009, Nature materials.

[19]  Younan Xia,et al.  Shape‐Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions , 2009 .

[20]  Zhaoxiong Xie,et al.  Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. , 2008, Angewandte Chemie.

[21]  Zhong Lin Wang,et al.  A new catalytically active colloidal platinum nanocatalyst: the multiarmed nanostar single crystal. , 2008, Journal of the American Chemical Society.

[22]  Peidong Yang,et al.  Shape Control of Colloidal Metal Nanocrystals , 2008 .

[23]  Yongxing Hu,et al.  Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports. , 2008, Nano letters.

[24]  Kyriakos Komvopoulos,et al.  Platinum nanoparticle shape effects on benzene hydrogenation selectivity. , 2007, Nano letters.

[25]  M. Möller,et al.  Structural evolution of gold nanorods during controlled secondary growth. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[26]  G. C. Fu,et al.  Alkyl-alkyl suzuki cross-couplings of unactivated secondary alkyl halides at room temperature. , 2007, Journal of the American Chemical Society.

[27]  Zhong Lin Wang,et al.  Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity , 2007, Science.

[28]  Peidong Yang,et al.  Morphological control of catalytically active platinum nanocrystals. , 2006, Angewandte Chemie.

[29]  Hong Yang,et al.  Synthesis of porous platinum nanoparticles. , 2006, Small.

[30]  T. Hyeon,et al.  Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. , 2002, Journal of the American Chemical Society.

[31]  Younan Xia,et al.  Formkontrolle bei der Synthese von Metallnanokristallen: einfache Chemie, komplexe Physik? , 2009 .

[32]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.