The vertical distribution of phytoplankton in stratified water columns.

What determines the vertical distribution of phytoplankton in different aquatic environments remains an open question. To address this question, we develop a model to explore how phytoplankton respond through growth and movement to opposing resource gradients and different mixing conditions. We assume stratification creates a well-mixed surface layer on top of a poorly mixed deep layer and nutrients are supplied from multiple depth-dependent sources. Intraspecific competition leads to a unique strategic equilibrium for phytoplankton, which allows us to classify the distinct vertical distributions that can exist. Biomass can occur as a benthic layer (BL), a deep chlorophyll maximum (DCM), or in the mixed layer (ML), or as a combination of BL+ML or DCM+ML. The ML biomass can be limited by nutrients, light, or both. We predict how the vertical distribution, relative resource limitation, and biomass of phytoplankton will change across environmental gradients. We parameterized our model to represent potentially light and phosphorus limited freshwater lakes, but the model is applicable to a broad range of vertically stratified systems. Increasing nutrient input from the sediments or to the mixed layer increases light limitation, shifts phytoplankton towards the surface, and increases total biomass. Increasing background light attenuation increases light limitation, shifts the phytoplankton towards the surface, and generally decreases total biomass. Increasing mixed layer depth increases, decreases, or has no effect on light limitation and total biomass. Our model is able to replicate the diverse vertical distributions observed in nature and explain what underlying mechanisms drive these distributions.

[1]  Colin S. Reynolds,et al.  The ecology of freshwater phytoplankton , 1984 .

[2]  J. Huisman,et al.  Summer heatwaves promote blooms of harmful cyanobacteria , 2008 .

[3]  M. Leibold Resources and predators can affect the vertical distributions of zooplankton , 1990 .

[4]  Elena Litchman,et al.  Algal games: The vertical distribution of phytoplankton in poorly mixed water columns , 2001 .

[5]  S. Diehl,et al.  PHYTOPLANKTON, LIGHT, AND NUTRIENTS IN A GRADIENT OF MIXING DEPTHS: THEORY , 2002 .

[6]  John H. Steele,et al.  Some Comments on Plankton Patches , 1978 .

[7]  E. Fee The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area, northwestern Ontario: Implications for primary production estimates , 1976 .

[8]  明 大久保,et al.  Diffusion and ecological problems : mathematical models , 1980 .

[9]  W. Wurtsbaugh,et al.  Fertilization of an Oligotrophic Lake with a Deep Chlorophyll Maximun: Predicting the Effect on Primary Productivity , 1997 .

[10]  K. Mann,et al.  Dynamics of Marine Ecosystems , 1991 .

[11]  B. Hodges,et al.  Simple models of steady deep maxima in chlorophyll and biomass , 2004 .

[12]  Richard P. Barbiero,et al.  Results from the U.S. EPA's Biological Open Water Surveillance Program of the Laurentian Great Lakes: I. Introduction and Phytoplankton Results , 2001 .

[13]  Lucas J Stal,et al.  The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. , 1997, The New phytologist.

[14]  A. Wüest,et al.  Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind‐forced stratified waters , 2000 .

[15]  C. Williamson,et al.  Utilization of subsurface food resources for zooplankton reproduction: Implications for diel vertical migration theory , 1996 .

[16]  M. Tuchman,et al.  Results from the U.S. EPA's Biological Open Water Surveillance Program of the Laurentian Great Lakes: II. Deep Chlorophyll Maxima , 2001 .

[17]  J. Kirk A THEORETICAL ANALYSIS OF THE CONTRIBUTION OF ALGAL CELLS TO THE ATTENUATION OF LIGHT WITHIN NATURAL WATERS I. GENERAL TREATMENT OF SUSPENSIONS OF PIGMENTED CELLS , 1975 .

[18]  P. Casper,et al.  Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake District (Germany) , 1998 .

[19]  I. Hense,et al.  Beneath the surface: Characteristics of oceanic ecosystems under weak mixing conditions – A theoretical investigation , 2007 .

[20]  B. Manly,et al.  Trade–offs in the vertical distribution of zooplankton: ideal free distribution with costs? , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[21]  J. Cullen,et al.  Behavior, physiology and the niche of depth-regulating phytoplankton , 1998 .

[22]  S. Condie,et al.  The Influence of Density Stratification on Particle Settling, Dispersion and Population Growth , 1997 .

[23]  K. Sand‐Jensen,et al.  Light attenuation and photosynthesis of aquatic plant communities , 1998 .

[24]  F. H. Verhoff,et al.  Nutrient regeneration from aerobic decomposition of green algae , 1977 .

[25]  S. Diehl,et al.  Phytoplankton, light and nutrients along a gradient of mixing depth: a field test of producer‐resource theory , 2003 .

[26]  B. Blasius,et al.  Vertical distribution and composition of phytoplankton under the influence of an upper mixed layer. , 2010, Journal of theoretical biology.

[27]  P. Thompson,et al.  Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms , 1997 .

[28]  A. Cohen,et al.  Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa , 2003, Nature.

[29]  S. Carpenter,et al.  Predicting chlorophyll vertical distribution in response to epilimnetic nutrient enrichment in small stratified lakes , 1995 .

[30]  David M. Karl,et al.  Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum , 2006, Nature.

[31]  J. Tjims,et al.  Determining environmentally sound soil phosphorus levels , 2022 .

[32]  Thomas G. Coon,et al.  Summer dynamics of the deep chlorophyll maximum in Lake Tahoe , 1987 .

[33]  C. Klausmeier,et al.  Phytoplankton Competition for Nutrients and Light in a Stratified Water Column , 2009, The American Naturalist.

[34]  L. Lijklema,et al.  Estimation of sediment-water exchange of solutes in Lake Veluwe, the Netherlands , 1999 .

[35]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[36]  J. R. Romero,et al.  Boundary mixing and nutrient fluxes in Mono Lake, California , 1999 .

[37]  Jonathan Sharples,et al.  Phytoplankton motility and the competition for nutrients in the thermocline , 2007 .

[38]  Franz J. Weissing,et al.  Competition for Nutrients and Light in a Mixed Water Column: A Theoretical Analysis , 1995, The American Naturalist.

[39]  M. Monsi,et al.  On the factor light in plant communities and its importance for matter production. 1953. , 2004, Annals of botany.

[40]  J. Huisman,et al.  Changes in turbulent mixing shift competition for light between phytoplankton species , 2004 .

[41]  H. Paerl Nuisance phytoplankton blooms in coastal, estuarine, and inland waters1 , 1988 .

[42]  B. Ibelings,et al.  Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, the Netherlands , 1996 .

[43]  Antonio Camacho,et al.  On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes , 2006, Limnetica.

[44]  A. Walsby,et al.  Gas vesicles , 1994, Microbiological reviews.

[45]  P. Verburg,et al.  Ecological Consequences of a Century of Warming in Lake Tanganyika , 2003, Science.

[46]  Per Ask,et al.  Light limitation of nutrient-poor lake ecosystems , 2009, Nature.

[47]  Franz J. Weissing,et al.  Critical depth and critical turbulence: Two different mechanisms for the development of phytoplankton blooms , 1999 .

[48]  D. Straile,et al.  Turbulent mixing and phytoplankton spring bloom development in a deep lake , 2007 .

[49]  J. Overpeck,et al.  Increasing Eolian Dust Deposition in the Western United States Linked to Human Activity , 2008 .

[50]  S. Diehl,et al.  Physical Determinants of Phytoplankton Production, Algal Stoichiometry, and Vertical Nutrient Fluxes , 2010, The American Naturalist.

[51]  H. Paerl,et al.  Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. , 2009, Environmental microbiology reports.

[52]  D. Tilman Resource competition and community structure. , 1983, Monographs in population biology.

[53]  Sze-Bi Hsu,et al.  Concentration Phenomena in a Nonlocal Quasi-linear Problem Modelling Phytoplankton II: Limiting Profile , 2008, SIAM J. Math. Anal..

[54]  T. Osborn,et al.  Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements , 1980 .

[55]  J. Hartmann,et al.  The impact of Eurasian dust storms and anthropogenic emissions on atmospheric nutrient deposition rates in forested Japanese catchments and adjacent regional seas , 2008 .

[56]  Franz J. Weissing,et al.  Light-limited growth and competition for light in well-mixed aquatic environments : An elementary model , 1994 .

[57]  K. Yoshiyama,et al.  Catastrophic transition in vertical distributions of phytoplankton: alternative equilibria in a water column. , 2002, Journal of theoretical biology.

[58]  Anna-Liisa Holopainen,et al.  Seasonal succession, vertical distribution and long term variation of phytoplankton communities in two shallow forest lakes in eastern Finland , 2003, Hydrobiologia.

[59]  J. Huisman,et al.  Maximal sustainable sinking velocity of phytoplankton , 2002 .

[60]  R. Peters,et al.  PHOSPHORUS RELEASE BY DAPHNIA1 , 1973 .

[61]  J. Huisman POPULATION DYNAMICS OF LIGHT-LIMITED PHYTOPLANKTON: MICROCOSM EXPERIMENTS , 1999 .

[62]  David W. Schindler,et al.  WIDESPREAD EFFECTS OF CLIMATIC WARMING ON FRESHWATER ECOSYSTEMS IN NORTH AMERICA , 1997 .

[63]  Frank H. Quinn,et al.  POTENTIAL EFFECTS OF CLIMATE CHANGES ON AQUATIC SYSTEMS: LAURENTIAN GREAT LAKES AND PRECAMBRIAN SHIELD REGION , 1997 .

[64]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[65]  Katja Fennel,et al.  Subsurface maxima of phytoplankton and chlorophyll: Steady‐state solutions from a simple model , 2003 .

[66]  Ben P. Sommeijer,et al.  Population dynamics of sinking phytoplankton in light-limited environments: simulation techniques and critical parameters , 2002 .

[67]  Donald M. Anderson,et al.  Physiological ecology of harmful algal blooms , 1998 .

[68]  K. Sand‐Jensen,et al.  Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries , 1991 .

[69]  Martin W. Marsden,et al.  Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release , 1989 .

[70]  S. Diehl,et al.  PHYTOPLANKTON, LIGHT, AND NUTRIENTS IN A GRADIENT OF MIXING DEPTHS: FIELD EXPERIMENTS , 2002 .

[71]  Janet K. Thompson,et al.  Does the Sverdrup critical depth model explain bloom dynamics in estuaries , 1998 .

[72]  G. E. Hutchinson,et al.  A treatise on limnology. , 1957 .

[73]  G. Hays,et al.  Climate change and marine plankton. , 2005, Trends in ecology & evolution.