Explosive synchronization transitions in scale-free networks.

Explosive collective phenomena have attracted much attention since the discovery of an explosive percolation transition. In this Letter, we demonstrate how an explosive transition shows up in the synchronization of scale-free networks by incorporating a microscopic correlation between the structural and the dynamical properties of the system. The characteristics of the explosive transition are analytically studied in a star graph reproducing the results obtained in synthetic networks. Our findings represent the first abrupt synchronization transition in complex networks and provide a deeper understanding of the microscopic roots of explosive critical phenomena.

[1]  J. Rogers Chaos , 1876, Molecular Vibrations.

[2]  Yoshiki Kuramoto,et al.  Self-entrainment of a population of coupled non-linear oscillators , 1975 .

[3]  A. Winfree The geometry of biological time , 1991 .

[4]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[5]  P. Gács,et al.  Algorithms , 1992 .

[6]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[7]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[8]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[9]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[10]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[11]  S. Strogatz Exploring complex networks , 2001, Nature.

[12]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[13]  N. Mavromatos,et al.  LECT NOTES PHYS , 2002 .

[14]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[15]  A. Pikovsky,et al.  Synchronization: Theory and Application , 2003 .

[16]  Yamir Moreno,et al.  Synchronization of Kuramoto oscillators in scale-free networks , 2004 .

[17]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[18]  Deok-Sun Lee Synchronization transition in scale-free networks: clusters of synchrony. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Changsong Zhou,et al.  Universality in the synchronization of weighted random networks. , 2006, Physical review letters.

[20]  J. Gómez-Gardeñes,et al.  From scale-free to Erdos-Rényi networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Alex Arenas,et al.  Synchronization reveals topological scales in complex networks. , 2006, Physical review letters.

[22]  J. Kurths,et al.  Hierarchical synchronization in complex networks with heterogeneous degrees. , 2006, Chaos.

[23]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[24]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[25]  Alex Arenas,et al.  Paths to synchronization on complex networks. , 2006, Physical review letters.

[26]  Chris Arney Sync: The Emerging Science of Spontaneous Order , 2007 .

[27]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[28]  J. Spencer,et al.  Explosive Percolation in Random Networks , 2009, Science.

[29]  B. Kahng,et al.  Percolation transitions in scale-free networks under the Achlioptas process. , 2009, Physical review letters.

[30]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[31]  F. Radicchi,et al.  Explosive percolation in scale-free networks. , 2009, Physical review letters.

[32]  W. Marsden I and J , 2012 .

[33]  F. C NOTES ON PHYSICS. , 2022, Science.