Altered patterning of trisomy 21 interneuron progenitors

[1]  Xiaoqun Wang,et al.  Mouse and human share conserved transcriptional programs for interneuron development , 2021, Science.

[2]  F. Skinner,et al.  Common Principles in Functional Organization of VIP/Calretinin Cell-Driven Disinhibitory Circuits Across Cortical Areas , 2020, Frontiers in Neural Circuits.

[3]  J. Rain,et al.  Downregulated Wnt/β-catenin signalling in the Down syndrome hippocampus , 2019, Scientific Reports.

[4]  Olga Tanaseichuk,et al.  Metascape provides a biologist-oriented resource for the analysis of systems-level datasets , 2019, Nature Communications.

[5]  Stephan J Sanders,et al.  Integrative functional genomic analysis of human brain development and neuropsychiatric risks , 2018, Science.

[6]  Ying Liu,et al.  OLIG2 Drives Abnormal Neurodevelopmental Phenotypes in Human iPSC-Based Organoid and Chimeric Mouse Models of Down Syndrome. , 2019, Cell stem cell.

[7]  R. Bartesaghi,et al.  Abnormal development of the inferior temporal region in fetuses with Down syndrome , 2018, Brain pathology.

[8]  M. Clarke,et al.  Usp16 modulates Wnt signaling in primary tissues through Cdkn2a regulation , 2018, Scientific Reports.

[9]  Z. Kozmík,et al.  Tcf7L2 is essential for neurogenesis in the developing mouse neocortex , 2018, Neural Development.

[10]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[11]  Lin Yao,et al.  Modeling Down Syndrome with Patient iPSCs Reveals Cellular and Migration Deficits of GABAergic Neurons , 2018, Stem cell reports.

[12]  Christoph Hafemeister,et al.  Developmental diversification of cortical inhibitory interneurons , 2017, Nature.

[13]  Duan Xu,et al.  Extensive migration of young neurons into the infant human frontal lobe , 2016, Science.

[14]  A. Csiszar,et al.  Extended Production of Cortical Interneurons into the Third Trimester of Human Gestation. , 2016, Cerebral cortex.

[15]  A. Peters,et al.  Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination , 2016, Neuron.

[16]  A. Contestabile,et al.  Reversing excitatory GABAAR signaling restores synaptic plasticity and memory in a mouse model of Down syndrome , 2015, Nature Medicine.

[17]  S. Anderson,et al.  Diversity of Cortical Interneurons in Primates: The Role of the Dorsal Proliferative Niche , 2014, Cell reports.

[18]  B. Delatour,et al.  Treating enhanced GABAergic inhibition in Down syndrome: Use of GABA α5-selective inverse agonists , 2014, Neuroscience & Biobehavioral Reviews.

[19]  Z. Petanjek,et al.  Neocortical calretinin neurons in primates: increase in proportion and microcircuitry structure , 2014, Front. Neuroanat..

[20]  Sterling C. Johnson,et al.  Cognitive functioning in relation to brain amyloid-β in healthy adults with Down syndrome. , 2014, Brain : a journal of neurology.

[21]  V. Bolshakov,et al.  Efficient Specification of Interneurons from Human Pluripotent Stem Cells by Dorsoventral and Rostrocaudal Modulation , 2014, Stem cells.

[22]  C. Chen,et al.  R-Spondin 3 Regulates Dorsoventral and Anteroposterior Patterning by Antagonizing Wnt/β-Catenin Signaling in Zebrafish Embryos , 2014, PloS one.

[23]  N. Kessaris,et al.  Genetic programs controlling cortical interneuron fate , 2014, Current Opinion in Neurobiology.

[24]  N. Jovanov-Milošević,et al.  Spatio-temporal extension in site of origin for cortical calretinin neurons in primates , 2014, Front. Neuroanat..

[25]  Marie-Claude Potier,et al.  Reducing GABAergic inhibition restores cognitive functions in a mouse model of Down syndrome. , 2014, CNS & neurological disorders drug targets.

[26]  J. Rubenstein,et al.  Subcortical origins of human and monkey neocortical interneurons , 2013, Nature Neuroscience.

[27]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[28]  Jan H Lui,et al.  Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences , 2013, Nature Neuroscience.

[29]  Yan Liu,et al.  Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells , 2013, Nature Protocols.

[30]  Mark J West,et al.  Optimizing the sampling scheme for a stereological study: how many individuals, sections, and probes should be used. , 2013, Cold Spring Harbor protocols.

[31]  J. Rubenstein,et al.  Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. , 2013, Cell stem cell.

[32]  S. Anderson,et al.  Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. , 2013, Cell stem cell.

[33]  N. Zečević,et al.  COUP-TFII expressing interneurons in human fetal forebrain. , 2012, Cerebral cortex.

[34]  Yong-ri Jin,et al.  The R-spondin family of proteins: emerging regulators of WNT signaling. , 2012, The international journal of biochemistry & cell biology.

[35]  Oscar Marín,et al.  Interneuron dysfunction in psychiatric disorders , 2012, Nature Reviews Neuroscience.

[36]  E. Rossignol,et al.  Genetics and Function of Neocortical GABAergic Interneurons in Neurodevelopmental Disorders , 2011, Neural plasticity.

[37]  Renata Bartesaghi,et al.  Widespread Proliferation Impairment and Hypocellularity in the Cerebellum of Fetuses with Down Syndrome , 2011, Brain pathology.

[38]  S. Lodato,et al.  Loss of COUP-TFI Alters the Balance between Caudal Ganglionic Eminence- and Medial Ganglionic Eminence-Derived Cortical Interneurons and Results in Resistance to Epilepsy , 2011, The Journal of Neuroscience.

[39]  Rogely Waite Boyce,et al.  Design-based Stereology , 2010, Toxicologic pathology.

[40]  Mara Dierssen,et al.  Cognitive deficits and associated neurological complications in individuals with Down's syndrome , 2010, The Lancet Neurology.

[41]  H. Moore,et al.  Sonic Hedgehog Signaling Confers Ventral Telencephalic Progenitors with Distinct Cortical Interneuron Fates , 2010, Neuron.

[42]  K. Gardiner Molecular basis of pharmacotherapies for cognition in Down syndrome. , 2010, Trends in pharmacological sciences.

[43]  M. Barber,et al.  Diversity , 2010, The Fairchild Books Dictionary of Fashion.

[44]  M. Johnson,et al.  Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells , 2009, Development.

[45]  C. Svendsen,et al.  A Critical Period in Cortical Interneuron Neurogenesis in Down Syndrome Revealed by Human Neural Progenitor Cells , 2009, Developmental Neuroscience.

[46]  Edward G Jones,et al.  The origins of cortical interneurons: mouse versus monkey and human. , 2009, Cerebral cortex.

[47]  C. Svendsen,et al.  A systems biology approach to Down syndrome: identification of Notch/Wnt dysregulation in a model of stem cells aging. , 2009, Biochimica et biophysica acta.

[48]  H. Tabata,et al.  COUP-TFII Is Preferentially Expressed in the Caudal Ganglionic Eminence and Is Involved in the Caudal Migratory Stream , 2008, The Journal of Neuroscience.

[49]  B. Pakkenberg,et al.  Reduced cell number in the neocortical part of the human fetal brain in Down syndrome. , 2008, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[50]  S. Anderson,et al.  NKX2.1 specifies cortical interneuron fate by activating Lhx6 , 2008, Development.

[51]  A. Contestabile,et al.  Cell cycle alteration and decreased cell proliferation in the hippocampal dentate gyrus and in the neocortical germinal matrix of fetuses with down syndrome and in Ts65Dn mice , 2007, Hippocampus.

[52]  S. Anderson,et al.  Shh maintains Nkx2.1 in the MGE by a Gli3-independent mechanism. , 2006, Cerebral cortex.

[53]  S. Anderson,et al.  Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon , 2005, Development.

[54]  K. Wisniewski,et al.  Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. , 2005, American journal of medical genetics. Supplement.

[55]  O. Marín,et al.  Developmental Mechanisms Underlying the Generation of Cortical Interneuron Diversity , 2005, Neuron.

[56]  S. Anderson,et al.  Origins of Cortical Interneuron Subtypes , 2004, The Journal of Neuroscience.

[57]  K. Campbell Dorsal-ventral patterning in the mammalian telencephalon , 2003, Current Opinion in Neurobiology.

[58]  S. Mcconnell,et al.  Distinct origins of neocortical projection neurons and interneurons in vivo. , 2002, Cerebral cortex.

[59]  S. Anderson Determination of cell fate within the telencephalon. , 2002, Chemical senses.

[60]  John L.R. Rubenstein,et al.  Induction and Dorsoventral Patterning of the Telencephalon , 2000, Neuron.

[61]  Patrick R Hof,et al.  Practical approaches to stereology in the setting of aging- and disease-related brain banks , 2000, Journal of Chemical Neuroanatomy.

[62]  B T Hyman,et al.  Development of the Superior Temporal Neocortex Is Anomalous in Trisomy 21 , 1994, Journal of neuropathology and experimental neurology.

[63]  O Nalcioglu,et al.  Magnetic resonance imaging analysis of age‐related changes in the brains of individuals with Down's syndrome , 1994, Neurology.

[64]  H. Gundersen,et al.  Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator , 1991, The Anatomical record.

[65]  L. Becker,et al.  Neuropathology in patients with congenital heart disease and Down syndrome. , 1991, Pediatric pathology.

[66]  L. Becker Synaptic Dysgenesis , 1991, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[67]  K. Wisniewski,et al.  Brain growth in Down syndrome subjects 15 to 22 weeks of gestational age and birth to 60 months. , 1990, Clinical neuropathology.

[68]  H. Wiśniewski,et al.  Evidence of arrest of neurogenesis and synaptogenesis in brains of patients with Down's syndrome. , 1984, The New England journal of medicine.

[69]  A. Galaburda,et al.  Down's syndrome , 1984, Neurology.

[70]  Sachio Takashima,et al.  Abnormal neuronal development in the visual cortex of the human fetus and infant with down's syndrome. A quantitative and qualitative golgi study , 1981, Brain Research.

[71]  E. Colon The Structure of the Cerebral Cortex in Down's Syndrome – A quantitative analysis – , 1972 .

[72]  L. Davidoff THE BRAIN IN MONGOLIAN IDIOCY: A REPORT OF TEN CASES , 1928 .

[73]  R. Bartesaghi,et al.  Neurogenesis impairment: An early developmental defect in Down syndrome , 2018, Free radical biology & medicine.

[74]  A. Bacci,et al.  GABAergic over‐inhibition, a promising hypothesis for cognitive deficits in Down syndrome , 2018, Free radical biology & medicine.

[75]  M. Studer,et al.  The nuclear receptors COUP-TF: a long-lasting experience in forebrain assembly , 2013, Cellular and Molecular Life Sciences.

[76]  S. Anderson,et al.  Fate mapping Nkx2.1‐lineage cells in the mouse telencephalon , 2008, The Journal of comparative neurology.

[77]  M. Dierssen,et al.  Fetal life in Down syndrome starts with normal neuronal density but impaired dendritic spines and synaptosomal structure. , 2001, Journal of neural transmission. Supplementum.

[78]  S. Anderson,et al.  The contribution of the ganglionic eminence to the neuronal cell types of the cerebral cortex. , 2000, Novartis Foundation symposium.

[79]  J. Kesslak,et al.  Magnetic resonance imaging of the aging brain in Down syndrome. , 1995, Progress in clinical and biological research.

[80]  L. Becker,et al.  Growth and development of the brain in Down syndrome. , 1991, Progress in clinical and biological research.

[81]  C. Benda Mongolism and cretinism , 1946 .