Decompositions of binomial ideals

We present Binomials, a package for the computer algebra system Macaulay 2, which specializes well-known algorithms to binomial ideals. These come up frequently in algebraic statistics and commutative algebra, and it is shown that significant speedup of computations like primary decomposition is possible. While central parts of the implemented algorithms go back to a paper of Eisenbud and Sturmfels, we also discuss a new algorithm for computing the minimal primes of a binomial ideal. All decompositions make significant use of combinatorial structure found in binomial ideals, and to demonstrate the power of this approach we show how Binomials was used to compute primary decompositions of commuting birth and death ideals of Evans et al., yielding a counterexample for their conjectures.

[1]  R. Gilmer,et al.  Commutative Semigroup Rings , 1984 .

[2]  Alex Fink The binomial ideal of the intersection axiom for conditional probabilities , 2009, 0902.1495.

[3]  Bernd Sturmfels,et al.  GRIN: An Implementation of Gröbner Bases for Integer Programming , 1995, IPCO.

[4]  Alicia Dickenstein,et al.  Combinatorics of binomial primary decomposition , 2008, 0803.3846.

[5]  Jason Morton,et al.  Three Counter-Examples on Semi-Graphoids , 2008, Combinatorics, Probability and Computing.

[6]  J. Brasselet Introduction to toric varieties , 2004 .

[7]  Raymond Hemmecke,et al.  Computing generating sets of lattice ideals , 2005 .

[8]  D. Segal ALGEBRA: (Graduate Texts in Mathematics, 73) , 1982 .

[9]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[10]  Roberto La Scala,et al.  Computing Toric Ideals , 1999, J. Symb. Comput..

[11]  Raymond Hemmecke,et al.  Computing generating sets of lattice ideals 1 , 2006 .

[12]  Takayuki Hibi,et al.  Binomial edge ideals and conditional independence statements , 2009, Adv. Appl. Math..

[13]  Vaidyanathan Ramaswami,et al.  Introduction to Matrix Analytic Methods in Stochastic Modeling , 1999, ASA-SIAM Series on Statistics and Applied Mathematics.

[14]  Seth Sullivant,et al.  Lectures on Algebraic Statistics , 2008 .

[15]  B. Sturmfels,et al.  Binomial Ideals , 1994, alg-geom/9401001.

[16]  D. Geiger,et al.  On the toric algebra of graphical models , 2006, math/0608054.

[17]  William Fulton,et al.  Introduction to Toric Varieties. (AM-131) , 1993 .

[18]  Ignacio Ojeda Martínez de Castilla,et al.  Cellular Binomial Ideals. Primary Decomposition of Binomial Ideals , 2000, J. Symb. Comput..

[19]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[20]  Bernd Sturmfels,et al.  Computations in Algebraic Geometry with Macaulay 2 , 2001 .

[21]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[22]  Raymond Hemmecke,et al.  Computing generating sets of lattice ideals and Markov bases of lattices , 2009, J. Symb. Comput..

[23]  The chain property for the associated primes of A-graded ideals , 2000, math/0004142.

[24]  Bernd Sturmfels,et al.  Commuting birth-and-death processes. , 2008, 0812.2724.