Conjugate gradient eigenstructure tracking for adaptive spectral estimation

A conjugate gradient iteration is derived that converges to the set of r dominant/subdominant eigenpairs. This iteration is used to construct two eigenstructure tracking algorithms that track the r-dimensional dominant or subdominant subspaces of time-varying data or data-covariance matrices. The two eigenstructure tracking algorithms have update complexities O(m/sup 2/r) and the other O(mr/sup 2/), where m is the data dimension. The algorithms are customized to solve high resolution temporal and spatial frequency tracking problems. They are compared with existing techniques by tying into published simulation based performance tests. The algorithms demonstrate rapid convergence and tracking characteristics at a competitive cost. >

[1]  R. Fletcher,et al.  New iterative methods for solution of the eigenproblem , 1966 .

[2]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[3]  Norman L. Owsley,et al.  Adaptive data orthogonalization , 1978, ICASSP.

[4]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  R. Kumaresan,et al.  Estimating the Angles of Arrival of Multiple Plane Waves , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Soheil A. Dianat,et al.  Adaptive spectral estimation by the conjugate gradient method , 1985, ICASSP.

[8]  Tapan K. Sarkar,et al.  Adaptive spectral estimation by the conjugate gradient method , 1986, IEEE Trans. Acoust. Speech Signal Process..

[9]  Ilkka Karasalo,et al.  Estimating the covariance matrix by signal subspace averaging , 1986, IEEE Trans. Acoust. Speech Signal Process..

[10]  Raziel Haimi-Cohen,et al.  Gradient-Type Algorithms for Partial Singular Value Decomposition , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Jar-Ferr Yang,et al.  Adaptive eigensubspace algorithms for direction or frequency estimation and tracking , 1988, IEEE Trans. Acoust. Speech Signal Process..

[12]  D. Fuhrmann An algorithm for subspace computation, with applications in signal processing , 1988 .

[13]  Tapan K. Sarkar,et al.  A survey of conjugate gradient algorithms for solution of extreme eigen-problems of a symmetric matrix , 1989, IEEE Trans. Acoust. Speech Signal Process..

[14]  T. Sarkar,et al.  Application of the conjugate gradient and steepest descent for computing the eigenvalues of an operator , 1989 .

[15]  Jean-Pierre Le Cadre Parametric methods for spatial signal processing in the presence of unknown colored noise fields , 1989, IEEE Trans. Acoust. Speech Signal Process..

[16]  Gene H. Golub,et al.  Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..

[17]  Joos Vandewalle,et al.  Updating Singular Value Decompositions. A Parallel Implementation. , 1989, Optics & Photonics.

[18]  M. Srinath,et al.  Conjugate gradient techniques for adaptive filtering , 1989, IEEE International Symposium on Circuits and Systems,.

[19]  John G. Proakis,et al.  Adaptive SVD algorithm for covariance matrix eigenstructure computation , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[20]  R. D. DeGroat,et al.  Efficient, numerically stabilized rank-one eigenstructure updating [signal processing] , 1990, IEEE Trans. Acoust. Speech Signal Process..

[21]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[22]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[23]  M. Fargues Tracking moving sources using the rank-revealing QR factorization , 1991, [1991] Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers.

[24]  Eric M. Dowling,et al.  Noniterative subspace updating , 1991, Optics & Photonics.

[25]  M. F. Griffin,et al.  Updating MUSIC and root-MUSIC with the rank-revealing URV decomposition , 1991, [1991] Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers.

[26]  Ronald D. DeGroat,et al.  Noniterative subspace tracking , 1992, IEEE Trans. Signal Process..

[27]  G. W. Stewart,et al.  An updating algorithm for subspace tracking , 1992, IEEE Trans. Signal Process..

[28]  Eric M. Dowling,et al.  Adaptation dynamics of the spherical subspace tracker , 1992, IEEE Trans. Signal Process..

[29]  Sabine Van Huffel,et al.  The total least squares problem , 1993 .

[30]  Thomas Kailath,et al.  Fast subspace decomposition , 1994, IEEE Trans. Signal Process..

[31]  Eric M. Dowling,et al.  A TQR-iteration based adaptive SVD for real time angle and frequency tracking , 1994, IEEE Trans. Signal Process..

[32]  Gene H. Golub,et al.  Fast algorithms for updating signal subspaces , 1994 .

[33]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.