Process development for the obtention and use of recombinant glycosidases: expression, modelling and immobilisation

El objetivo general de la presente tesis doctoral es el desarrollo de herramientas para la obtencion, produccion y aplicacion de dos enzimas glicosidicas: ??-L-arabinofuranosidasa proveniente del hongo Aspergillus niger (Abf) y ?A-D-glucosidasa (Bgl), proveniente de la levadura Candida molischiana. Estas hidrolasas se emplean en la liberacion de azucares en procesos de conversion de biomasa y en la industria alimentaria, pero tambien en la sintesis de aminoglicosidos, glicoconjugados y oligosacaridos, compuestos de alto valor anadido para la industria quimico-farmaceutica. Las enzimas se han expresado en la levadura metilotrofica Pichia pastoris, y se han purificado para caracterizar sus propiedades bioquimicas. Asimismo, se ha comprobado su capacidad para catalizar reacciones de transglicosilacion con alto rendimiento. En relacion a su produccion, se ha establecido y validado un modelo basado en restricciones del metabolismo de Pichia pastoris, evaluando su consistencia mediante analisis de flujos metabolicos posibilistico. El modelo permite estimar la tasa de crecimiento y la distribucion de flujos intracelulares a partir de unos pocos flujos extracelulares medidos experimentalmente. Adicionalmente, el modelo se ha extendido para estimar la productividad de proteina recombinante, y se ha empleado para analizar diferentes condiciones de cultivo de las cepas transgenicas que sobreproducen las enzimas Abf y Bgl. Finalmente, las enzimas se han inmobilizado en organosilicas bimodales de la familia UVM-7. Los biocatalizadores resultantes se han caracterizado bioquimica y fisico-quimicamente y se han evaluado en diferentes aplicaciones de interes biotecnologico.

[1]  P. Pifferi,et al.  Stabilization of a β-glucosidase from Aspergillus niger by binding to an amine agarose gel , 2000 .

[2]  G. Stephanopoulos,et al.  Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. , 2007, Metabolic engineering.

[3]  A. Arnaud,et al.  Purification and properties of the β‐glucosidase of a new strain of Candida molischiana able to work at low pH values: Possible use in the liberation of bound terpenols , 1991 .

[4]  P. Amorós,et al.  Surfactant‐Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes , 1999 .

[5]  A. Daugulis,et al.  A model-based feeding strategy for fed-batch fermentation of recombinant Pichia pastoris , 1997 .

[6]  D. Kluepfel,et al.  New alpha-L-arabinofuranosidase produced by Streptomyces lividans: cloning and DNA sequence of the abfB gene and characterization of the enzyme. , 1997, The Biochemical journal.

[7]  Mitchel J. Doktycz,et al.  Comparison of techniques for enzyme immobilization on silicon supports , 1999 .

[8]  M. Penttilä,et al.  Cloning of genes encoding alpha-L-arabinofuranosidase and beta-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae , 1996, Applied and environmental microbiology.

[9]  D. Kim,et al.  Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. , 2000, Biological & pharmaceutical bulletin.

[10]  H. Michlmayr,et al.  Isolation and basic characterization of a β‐glucosidase from a strain of Lactobacillus brevis isolated from a malolactic starter culture , 2010, Journal of applied microbiology.

[11]  Mondher Th. Numan,et al.  α-l-Arabinofuranosidases: the potential applications in biotechnology , 2006, Journal of Industrial Microbiology and Biotechnology.

[12]  F. Llaneras,et al.  Stoichiometric modelling of cell metabolism. , 2008, Journal of bioscience and bioengineering.

[13]  Michael Sauer,et al.  Recombinant protein production in yeasts. , 2012, Methods in molecular biology.

[14]  H. Tokunaga,et al.  Efficient expression, purification and characterization of mouse salivary α‐amylase secreted from methylotrophic yeast, Pichia pastoris , 2001, Yeast.

[15]  C. Bayonove,et al.  Hydrolysis of grape monoterpenyl β-D-glucosides by various β-glucosidases , 1990 .

[16]  Wenhui Zhang,et al.  Design of Methanol Feed Control in Pichia pastoris Fermentations Based upon a Growth Model , 2002, Biotechnology progress.

[17]  P. Pifferi,et al.  Immobilized β-glucosidase for the winemaking industry: study of biocatalyst operational stability in laboratory-scale continuous reactors , 1999 .

[18]  Yoh-ichi Matsushita,et al.  Preparation and Properties of Gelatin-Immobilized β-Glucosidase from Pyrococcus furiosus , 2005, Bioscience, biotechnology, and biochemistry.

[19]  Diethard Mattanovich,et al.  Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. , 2008, Biotechnology and bioengineering.

[20]  E. Berger,et al.  Expression of functional soluble forms of human beta-1, 4-galactosyltransferase I, alpha-2,6-sialyltransferase, and alpha-1, 3-fucosyltransferase VI in the methylotrophic yeast Pichia pastoris. , 2000, Biochemical and biophysical research communications.

[21]  Leonard A. Smith,et al.  Maximization of Production of Secreted Recombinant Proteins in Pichia pastoris Fed‐Batch Fermentation , 2008, Biotechnology progress.

[22]  D. Hanahan Studies on transformation of Escherichia coli with plasmids. , 1983, Journal of molecular biology.

[23]  Radhakrishnan Mahadevan,et al.  Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals , 2005 .

[24]  S. Kuzmanova,et al.  Transgalactosylation / Hydrolysis Ratios of Various b-Galactosidases Catalyzing Alkyl-b-Galactoside Synthesis in Single-Phased Alcohol Media , 2008 .

[25]  K Rumbold,et al.  High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. , 1997, Protein expression and purification.

[26]  R. Bill,et al.  Developing a scalable model of recombinant protein yield from Pichia pastoris: the influence of culture conditions, biomass and induction regime , 2009, Microbial cell factories.

[27]  O. Shoseyov,et al.  Detoxification of cassava by Aspergillus niger B-1 , 1996, Applied Microbiology and Biotechnology.

[28]  Jack Hoopes,et al.  Humanization of Yeast to Produce Complex Terminally Sialylated Glycoproteins , 2006, Science.

[29]  J. Sarry,et al.  Plant and microbial glycoside hydrolases: Volatile release from glycosidic aroma precursors , 2004 .

[30]  J. Heijnen,et al.  Linear constraint relations in biochemical reaction systems: I. Classification of the calculability and the balanceability of conversion rates , 1994, Biotechnology and bioengineering.

[31]  M. Meselson,et al.  DNA Restriction Enzyme from E. coli , 1968, Nature.

[32]  A. Zhu,et al.  High-level expression and purification of coffee bean alpha-galactosidase produced in the yeast Pichia pastoris. , 1995, Archives of biochemistry and biophysics.

[33]  K. Bellgardt,et al.  Macrokinetic model for methylotrophic Pichia pastoris based on stoichiometric balance. , 2003, Journal of biotechnology.

[34]  B. Schilling,et al.  Scale‐Up of a High Cell Density Continuous Culture with Pichiapastoris X‐33 for the Constitutive Expression of rh‐Chitinase , 2001, Biotechnology progress (Print).

[35]  Steffen Klamt,et al.  Computation of elementary modes: a unifying framework and the new binary approach , 2004, BMC Bioinformatics.

[36]  L. Gardossi,et al.  Synthesis of octyl glucopyranoside by almond β-glucosidase adsorbed onto Celite R-640® , 2002 .

[37]  Chong Xue,et al.  Increasing the cell viability and heterologous protein expression of Pichia pastoris mutant deficient in PMR1 gene by culture condition optimization , 2008, Applied Microbiology and Biotechnology.

[38]  N. Wan,et al.  High-level expression and stabilization of recombinant human chitinase produced in a continuous constitutive Pichia pastoris expression system. , 2001, Biotechnology and bioengineering.

[39]  A. Arnaud,et al.  Purification and properties of an exocellular β-glucosidase of Candida molischiana (Zikes) Meyer and Yarrow capable of hydrolyzing soluble cellodextrins , 1985 .

[40]  B. McCleary,et al.  Purification of β-d-glucosidase from Aspergillus niger , 1988 .

[41]  J. Asenjo,et al.  Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122. , 2003, Biotechnology and bioengineering.

[42]  F. Ausubel Current Protocols in Molecular Biology , ( 1995 ) , 2022 .

[43]  F. Schüth,et al.  Ordered mesoporous materials , 1999 .

[44]  J. Guisán Immobilization of enzymes and cells , 2006 .

[45]  J. Visser,et al.  Cloning and characterization of the abfB gene coding for the major α-l-arabinofuranosidase (ABF B) of Aspergillus niger , 1993, Current Genetics.

[46]  D. Crawford,et al.  Cloning of clustered Streptomyces viridosporus T7A lignocellulose catabolism genes encoding peroxidase and endoglucanase and their extracellular expression in Pichia pastoris. , 1998, Canadian journal of microbiology.

[47]  Yen Wei,et al.  Simultaneous immobilization of horseradish peroxidase and glucose oxidase in mesoporous sol-gel host materials. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[48]  Chengyue Li,et al.  A new support for the immobilization of penicillin acylase , 2000 .

[49]  Thomas Szyperski,et al.  Metabolic-Flux Profiling of the Yeasts Saccharomyces cerevisiae and Pichia stipitis , 2003, Eukaryotic Cell.

[50]  O. Palomares,et al.  The C-terminal segment of the 1,3-beta-glucanase Ole e 9 from olive (Olea europaea) pollen is an independent domain with allergenic activity: expression in Pichia pastoris and characterization. , 2003, The Biochemical journal.

[51]  Jens Nielsen,et al.  Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae , 2007, BMC Systems Biology.

[52]  R. Siegel,et al.  Fermentation Development of Recombinant Pichia pastoris Expressing the Heterologous Gene: Bovine Lysozyme , 1990, Annals of the New York Academy of Sciences.

[53]  S. Enfors,et al.  Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein , 2002 .

[54]  D. Thomas,et al.  Gluco‐oligosaccharide synthesis by free and immobilized β‐glucosidase , 1993 .

[55]  Sven-Olof Enfors,et al.  Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures , 2003, Microbial cell factories.

[56]  S. Lee,et al.  Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation , 1999, Applied Microbiology and Biotechnology.

[57]  Woo-Sik Kim,et al.  Enzymatic synthesis of alkylglucosides by amphiphilic phase enzyme reaction , 2000, Biotechnology Letters.

[58]  R Oliveira,et al.  Adaptive dissolved oxygen control through the glycerol feeding in a recombinant Pichia pastoris cultivation in conditions of oxygen transfer limitation. , 2005, Journal of biotechnology.

[59]  T Szyperski,et al.  13C-NMR, MS and metabolic flux balancing in biotechnology research , 1998, Quarterly Reviews of Biophysics.

[60]  Thomas I Potgieter,et al.  Antibody expression kinetics in glycoengineered Pichia pastoris , 2010, Biotechnology and bioengineering.

[61]  A. Arnaud,et al.  Selection and study of a Candida molischiana mutant derepressed for beta-glucosidase production. , 1994, FEMS microbiology letters.

[62]  M. Arisawa,et al.  Functional Characterization of the Candida albicans MNT1Mannosyltransferase Expressed Heterologously in Pichia pastoris * , 2000, The Journal of Biological Chemistry.

[63]  A. Daugulis,et al.  A rational approach to improving productivity in recombinant Pichia pastoris fermentation. , 2001, Biotechnology and bioengineering.

[64]  L. Boross,et al.  Reverse hydrolytic process for O-alkylation of glucose catalysed by immobilized α- and β-glucosidases , 1998 .

[65]  Oliver Spadiut,et al.  A dynamic method based on the specific substrate uptake rate to set up a feeding strategy for Pichia pastoris , 2011, Microbial cell factories.

[66]  H. Hammouri,et al.  Modeling and observer design for recombinant Escherichia coli strain , 2006, Bioprocess and biosystems engineering.

[67]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[68]  J. Luong,et al.  Enzyme or protein immobilization techniques for applications in biosensor design , 1995 .

[69]  J. Heijnen,et al.  A metabolic network stoichiometry analysis of microbial growth and product formation , 1995, Biotechnology and bioengineering.

[70]  Brigitte Gasser,et al.  Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris , 2006, Microbial cell factories.

[71]  Jesús Picó,et al.  Which Metabolic Pathways Generate and Characterize the Flux Space? A Comparison among Elementary Modes, Extreme Pathways and Minimal Generators , 2010, Journal of biomedicine & biotechnology.

[72]  Mark M. Meerschaert,et al.  Mathematical Modeling , 2014, Encyclopedia of Social Network Analysis and Mining.

[73]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[74]  M. D. Chang,et al.  Mutagenesis and mechanistic study of a glycoside hydrolase family 54 alpha-L-arabinofuranosidase from Trichoderma koningii. , 2007, The Biochemical journal.

[75]  J. Guisán Aldehyde-agarose gels as activated supports for immobilization-stabilization of enzymes , 1988 .

[76]  T. Ohya,et al.  Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation. , 2005, Biotechnology and bioengineering.

[77]  G. Stephanopoulos,et al.  Metabolic Engineering: Principles And Methodologies , 1998 .

[78]  A E Cunha,et al.  Methanol induction optimization for scFv antibody fragment production in Pichia pastoris , 2004, Biotechnology and bioengineering.

[79]  B. Thiede,et al.  Sequence and expression of Thai Rosewood beta-glucosidase/beta-fucosidase, a family 1 glycosyl hydrolase glycoprotein. , 2000, Journal of biochemistry.

[80]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[81]  P. Amorós,et al.  Ordered mesoporous materials: composition and topology control through chemistry , 2001 .

[82]  Francisco Valero,et al.  Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: A review , 2006, Microbial cell factories.

[83]  Nicole Borth,et al.  Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris , 2004, Biotechnology and bioengineering.

[84]  K. Bellgardt,et al.  Investigations on the optimal control of storage stability of compressed baker's yeast Saccharomyces cerevisiae , 1994 .

[85]  B. K. Hodnett,et al.  Adsorption and activity of cytochrome c on mesoporous silicates , 2001 .

[86]  Sérgio Santos de Jesus Análisis cuantitativo y modelización del metabolismo de la levadura Pichia pastoris , 2008 .

[87]  Georges Bastin,et al.  Dynamic metabolic modelling under the balanced growth condition , 2004 .

[88]  A. Corma,et al.  Delaminated zeolites: An efficient support for enzymes , 2002 .

[89]  M. Arroyo Inmovilización de enzimas. Fundamentos, métodos y aplicaciones , 1998 .

[90]  R. Fernández-Lafuente,et al.  Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. , 2005, Journal of biotechnology.

[91]  Friedrich Srienc,et al.  Metabolic pathway analysis of a recombinant yeast for rational strain development. , 2002, Biotechnology and bioengineering.

[92]  S. Cohen,et al.  Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. , 1980, Journal of molecular biology.

[93]  P. Manzanares,et al.  Over-production of the major exoglucanase of Saccharomyces cerevisiae leads to an increase in the aroma of wine. , 2005, International journal of food microbiology.

[94]  J J Heijnen,et al.  Energetics of growth and penicillin production in a high-producing strain of Penicillium chrysogenum. , 2001, Biotechnology and bioengineering.

[95]  C. Morton,et al.  Comparison of Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Spodoptera frugiperda, and COS7 cells for recombinant gene expression , 2000, Molecular biotechnology.

[96]  T. Kajino,et al.  Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent , 2001 .

[97]  R. Takors,et al.  Recombinant Protein Production with Pichia pastoris in Continuous Fermentation – Kinetic Analysis of Growth and Product Formation , 2001 .

[98]  K. Mauch,et al.  Tendency modeling: a new approach to obtain simplified kinetic models of metabolism applied to Saccharomyces cerevisiae. , 2000, Metabolic engineering.

[99]  A. Evidente,et al.  Purification and Characterization of Novel Antifungal Compounds from the Sourdough Lactobacillus plantarum Strain 21B , 2000, Applied and Environmental Microbiology.

[100]  B. Davison,et al.  Enzyme stabilization by covalent binding in nanoporous sol-gel glass for nonaqueous biocatalysis. , 2001, Biotechnology and bioengineering.

[101]  J. Valdés,et al.  Modeling of mini-proinsulin production in Pichia pastoris using the AOX promoter , 2003, Biotechnology Letters.

[102]  R. Sheldon,et al.  Glycosidase-catalysed synthesis of alkyl glycosides , 1999 .

[103]  S. Jørgensen,et al.  A biochemically structured model for Saccharomyces cerevisiae. , 2001, Journal of biotechnology.

[104]  V. M. Guimarães,et al.  Covalent Immobilization of α-Galactosidase from Penicillium griseoroseum and its Application in Oligosaccharides Hydrolysis , 2009, Applied biochemistry and biotechnology.

[105]  Michel Thiry,et al.  Optimizing scale-up fermentation processes. , 2002, Trends in biotechnology.

[106]  J. Tschopp,et al.  High-Level Secretion of Glycosylated Invertase in the Methylotrophic Yeast, Pichia Pastoris , 1987, Bio/Technology.

[107]  K. Balkus,et al.  Enzyme immobilization in MCM-41 molecular sieve , 1996 .

[108]  Eduardo Agosin,et al.  Modeling of yeast metabolism and process dynamics in batch fermentation , 2003, Biotechnology and bioengineering.

[109]  C. Scorer,et al.  The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris. , 1993, Gene.

[110]  M. Hernáiz,et al.  Immobilization/stabilization on Eupergit C of the β-galactosidase from B. circulans and an α-galactosidase from Aspergillus oryzae , 2000 .

[111]  H. Gies,et al.  Protein encapsulation in mesoporous silicate: the effects of confinement on protein stability, hydration, and volumetric properties. , 2004, Journal of the American Chemical Society.

[112]  C. Raymond,et al.  Effects of methanol concentration on expression levels of recombinant protein in fed-batch cultures of Pichia methanolica. , 2003, Biotechnology and bioengineering.

[113]  Urs von Stockar,et al.  Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: A quantitative study based on concentration gradients in transient continuous cultures. , 2007, Journal of biotechnology.

[114]  J Villadsen,et al.  Quantification of intracellular metabolic fluxes from fractional enrichment and 13C-13C coupling constraints on the isotopomer distribution in labeled biomass components. , 1999, Metabolic engineering.

[115]  A. Querol,et al.  A Comparative Study of Different Methods of Yeast Strain Characterization , 1992 .

[116]  B. Palsson The challenges of in silico biology , 2000, Nature Biotechnology.

[117]  Galen D. Stucky,et al.  MESOPOROUS SILICATE SEQUESTRATION AND RELEASE OF PROTEINS , 1999 .

[118]  J. Visser,et al.  Construction of a Genetically Modified Wine Yeast Strain Expressing the Aspergillus aculeatus rhaA Gene, Encoding an α-l-Rhamnosidase of Enological Interest , 2003, Applied and Environmental Microbiology.

[119]  A. Arnaud,et al.  Purification and properties of a BT‐glucosidase of Hanseniaspora vineae Van der Walt and Tscheuschner with the view to its utilization in fruit aroma liberation , 1989 .

[120]  V. Bisaria,et al.  Microbial β-Glucosidases: Cloning, Properties, and Applications , 2002 .

[121]  P A Vanrolleghem,et al.  Validation of a Metabolic Network for Saccharomyces cerevisiae Using Mixed Substrate Studies , 1996, Biotechnology progress.

[122]  Jungoh Ahn,et al.  Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement , 2010, Microbial cell factories.

[123]  Charles E. Wyman,et al.  Ethanol from lignocellulosic biomass: Technology, economics, and opportunities , 1994 .

[124]  H. Hang,et al.  A simple unstructured model-based control for efficient expression of recombinant porcine insulin precursor by Pichia pastoris , 2008 .

[125]  Steffen Klamt,et al.  FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps , 2003, Bioinform..

[126]  B. Palsson,et al.  Metabolic modelling of microbes: the flux-balance approach. , 2002, Environmental microbiology.

[127]  Rui Oliveira,et al.  Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures , 2008, BMC Systems Biology.

[128]  K. Palmu,et al.  Expression in Pichia pastoris and purification of Aspergillus awamori glucoamylase catalytic domain. , 1997, Protein expression and purification.

[129]  Uwe Sauer,et al.  TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. , 2004, Microbiology.

[130]  H. Matsuzawa,et al.  Expression, purification, crystallization and preliminary X-ray analysis of alpha-L-arabinofuranosidase B from Aspergillus kawachii. , 2004, Acta crystallographica. Section D, Biological crystallography.

[131]  S. Withers,et al.  Cloning, Expression, Characterization, and Nucleophile Identification of Family 3, Aspergillus nigerβ-Glucosidase* , 2000, The Journal of Biological Chemistry.

[132]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[133]  Luis González-Candelas,et al.  Construction of a recombinant wine yeast strain expressing a fungal pectate lyase gene. , 1995, FEMS microbiology letters.

[134]  D. Ramón,et al.  Interconnected mesopores and high accessibility in UVM-7-like silicas , 2012, Journal of Nanoparticle Research.

[135]  Poonam Singh Nee Nigam,et al.  Biotechnology for Agro-Industrial-Residues-Utilisation , 2009 .

[136]  Jesús Picó,et al.  A procedure for the estimation over time of metabolic fluxes in scenarios where measurements are uncertain and/or insufficient , 2007, BMC Bioinformatics.

[137]  J E Bailey,et al.  Mathematical Modeling and Analysis in Biochemical Engineering: Past Accomplishments and Future Opportunities , 1998, Biotechnology progress.

[138]  R. Contreras,et al.  Molecular cloning and enzymatic characterization of a Trichoderma reesei 1,2-α-D-mannosidase , 2000 .

[139]  Rui Oliveira,et al.  Hybrid metabolic flux analysis: combining stoichiometric and statistical constraints to model the formation of complex recombinant products , 2011, BMC Systems Biology.

[140]  K. Kobayashi,et al.  High level secretion of recombinant human serum albumin by fed-batch fermentation of the methylotrophic yeast, Pichia pastoris, based on optimal methanol feeding strategy. , 2000, Journal of bioscience and bioengineering.

[141]  Bernhard O. Palsson,et al.  Connecting Extracellular Metabolomic Measurements to Intracellular Flux States in Yeast , 2022 .

[142]  P. Colman,et al.  The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor , 1992, Proteins.

[143]  J. Espinosa,et al.  Beta-glucosidase activity in a Saccharomyces cerevisiae wine strain. , 2003, International journal of food microbiology.

[144]  B. Glick Metabolic load and heterologous gene expression. , 1995, Biotechnology advances.

[145]  A. H. Stouthamer,et al.  Oxidative phosphorylation in intact bacteria , 2004, Archiv für Mikrobiologie.

[146]  J. Calvete,et al.  Immobilization-stabilization of enzymes; variables that control the intensity of the trypsin (amine)-agarose (aldehyde) multipoint attachment , 1989 .

[147]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[148]  Gupta,et al.  Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversibly soluble polymer Eudragit(TM) L-100. , 2000, Enzyme and microbial technology.

[149]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[150]  E. Gilles,et al.  Metabolic design based on a coupled gene expression-metabolic network model of tryptophan production in Escherichia coli. , 2004, Metabolic engineering.

[151]  Y. Guéguen,et al.  Enhancement of aromatic quality of Muscat wine by the use of immobilized β-glucosidase , 1997 .

[152]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[153]  L. Fischer,et al.  Continuous production of lactulose by immobilized thermostable beta-glycosidase from Pyrococcus furiosus. , 2010, Journal of biotechnology.

[154]  T. Jeffries,et al.  Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. , 2004, Metabolic engineering.

[155]  Michal Dabros,et al.  Simple control of specific growth rate in biotechnological fed-batch processes based on enhanced online measurements of biomass , 2010, Bioprocess and biosystems engineering.

[156]  P. Adlercreutz,et al.  Competition between transglycosylation and hydrolysis in almond β-glucosidase-catalyzed conversion of p-nitrophenyl-β-d-glucoside in monophasic water/alcohol mixtures , 2007 .

[157]  D. Crout,et al.  Glycosidases and Glycosyl Transferases in Glycoside and Oligosaccharide Synthesis , 2010 .

[158]  N. Juge,et al.  High-Level Production of Recombinant Fungal Endo-β-1,4-xylanase in the Methylotrophic Yeast Pichia pastoris , 2000 .

[159]  P. Pifferi,et al.  Immobilization of β-glucosidase from a commercial preparation. Part 1. A comparative study of natural supports , 1996 .

[160]  Wenhui Zhang,et al.  Optimization of cell density and dilution rate in Pichia pastoris continuous fermentations for production of recombinant proteins , 2004, Journal of Industrial Microbiology and Biotechnology.

[161]  A. Arnaud,et al.  Cloning and sequencing of the beta-glucosidase-encoding gene from Candida molischiana strain 35M5N. , 1995, Gene.

[162]  R. Fernández-Lafuente,et al.  Stabilization of heterodimeric enzyme by multipoint covalent immobilization: Penicillin G acylase from Kluyvera citrophila , 1993, Biotechnology and bioengineering.

[163]  C. Ayra-Pardo,et al.  bb‐D‐glucuronidase gene from Escherichia coli is a functional reporter in the methylotrophic yeast Pichia pastoris , 1999 .

[164]  Thomas Szyperski,et al.  Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. , 2007, Microbiology.

[165]  W A Weigand,et al.  Framework for online optimization of recombinant protein expression in high-cell-density Escherichia coli cultures using GFP-fusion monitoring. , 2000, Biotechnology and bioengineering.

[166]  J. Ton,et al.  Synthesis of α-galacto-oligosaccharides by a cloned α-galactosidase from Bifidobacterium adolescentis , 1999, Biotechnology Letters.

[167]  A. M. Kanikula,et al.  Overexpression, purification, and characterization of a barley alpha-glucosidase secreted by Pichia pastoris. , 2000, Protein expression and purification.

[168]  John Villadsen,et al.  Modelling of microbial kinetics , 1992 .

[169]  Saúl Santos García,et al.  Immobilization and enzymatic activity of β-glucosidase on mesoporous SBA-15 silica , 2010 .

[170]  M. Reuss,et al.  In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. , 1997, Biotechnology and bioengineering.

[171]  K. Shimizu,et al.  Metabolic flux distributions in recombinant Saccharomyces cerevisiae during foreign protein production. , 1997, Journal of biotechnology.

[172]  Juan Carlos Nuño,et al.  METATOOL: for studying metabolic networks , 1999, Bioinform..

[173]  J. Brozmanová,et al.  A rapid preparation of plasmid DNA fromSaccharomyces cerevisiae , 2008, Folia Microbiologica.

[174]  W. Zhang,et al.  Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A. , 2000, Biotechnology and bioengineering.

[175]  M A Aon,et al.  Fluxes of carbon, phosphorylation, and redox intermediates during growth of saccharomyces cerevisiae on different carbon sources , 1995, Biotechnology and bioengineering.

[176]  Denis Dochain,et al.  ADAPTIVE CONTROL OF BIOREACTORS , 1990 .

[177]  Jun Liu,et al.  Entrapping enzyme in a functionalized nanoporous support. , 2002, Journal of the American Chemical Society.

[178]  P. Amorós,et al.  Generalised syntheses of ordered mesoporous oxides: the atrane route , 2000 .

[179]  Bernhard O. Palsson,et al.  A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory , 2008, BMC Systems Biology.

[180]  Wenhui Zhang,et al.  Improved Production of Recombinant Ovine Interferon‐τ by Mut+ Strain of Pichiapastoris Using an Optimized Methanol Feed Profile , 2003, Biotechnology progress.

[181]  Ali,et al.  Immobilization of functionally unstable catechol-2,3-dioxygenase greatly improves operational stability. , 2000, Enzyme and microbial technology.

[182]  Optimization of Specific Product Formation Rate by Statistical and Formal Kinetic Model Descriptions of an HSA Producing Pichia pastoris Mut s Strain , 2005 .

[183]  Francisco Llaneras Estrada,et al.  Interval and Possibilistic Methods for Constraint-Based Metabolic Models , 2011 .

[184]  Ana B. Descalzo,et al.  Silica-based powders and monoliths with bimodal pore systems. , 2002, Chemical communications.

[185]  E. Schacht,et al.  Comparative study of methodologies for obtaining β-glucosidase immobilized on dextran-modified silica , 1996 .

[186]  J. Heijnen,et al.  Linear constraint relations in biochemical reaction systems: II. Diagnosis and estimation of gross errors , 1994, Biotechnology and bioengineering.

[187]  Ashraf Amanullah,et al.  Twenty‐four‐well plate miniature bioreactor high‐throughput system: Assessment for microbial cultivations , 2007, Biotechnology and bioengineering.

[188]  M. Inan,et al.  The effect of ethanol and acetate on protein expression in Pichia pastoris. , 2001, Journal of bioscience and bioengineering.

[189]  Steffen Klamt,et al.  Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. , 2002, Biotechnology and bioengineering.

[190]  E. Vulfson,et al.  A novel approach to biotransformations in aqueous-organic two-phase systems : Enzymatic synthesis of alkyl β-[D]-glucosides using microencapsulated β-glucosidase , 1998 .

[191]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[192]  P. Wright,et al.  Enzyme immobilisation using siliceous mesoporous molecular sieves , 2001 .

[193]  B. K. Hodnett,et al.  Methodology for the immobilization of enzymes onto mesoporous materials. , 2005, The journal of physical chemistry. B.

[194]  M. Meagher,et al.  High cell-density fermentation. , 1998, Methods in molecular biology.

[195]  T. Gingeras,et al.  Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. , 1987, Nucleic acids research.

[196]  Johannes Stadlmann,et al.  A multi-level study of recombinant Pichia pastoris in different oxygen conditions , 2010, BMC Systems Biology.

[197]  P. Pifferi,et al.  A novel chitosan derivative to immobilize alpha-L-rhamnopyranosidase from Aspergillus niger for application in beverage technologies. , 2001, Enzyme and microbial technology.

[198]  P. Çalık,et al.  Production of recombinant human erythropoietin from Pichia pastoris and its structural analysis , 2007, Journal of applied microbiology.

[199]  P. Reilly,et al.  Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. , 1994, The Biochemical journal.

[200]  P. Pifferi,et al.  A simple Method for Purifying Glycosidases: α-l-arabinofuranosidase and β-d-glucopyranosidase from Aspergillus niger to Increase the Aroma of Wine. Part I , 1998 .

[201]  U. von Stockar,et al.  A small metabolic flux model to identify transient metabolic regulations in Saccharomyces cerevisiae , 2002 .

[202]  J. O. Baker,et al.  Cloning and Expression of Trichoderma reesei Cellobiohydrolase I in Pichia pastoris , 1999, Biotechnology progress.

[203]  R. Jasra,et al.  Studies on the activity and stability of immobilized α-amylase in ordered mesoporous silicas , 2005 .

[204]  M. Hearn,et al.  Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production , 2005, Journal of molecular recognition : JMR.

[205]  Andreas Schmid,et al.  Carbon metabolism limits recombinant protein production in Pichia pastoris , 2011, Biotechnology and bioengineering.

[206]  K. Balkus,et al.  Mesoporous molecular sieve immobilized enzymes , 1998 .

[207]  Sánchez-Torres,et al.  Heterologous Expression of a Candida molischiana Anthocyanin-beta-glucosidase in a Wine Yeast Strain. , 1998, Journal of agricultural and food chemistry.

[208]  Y. Ye,et al.  Recent progress on immobilization of enzymes on molecular sieves for reactions in organic solvents , 2002, Applied biochemistry and biotechnology.

[209]  J. Nielsen,et al.  Bioreaction Engineering Principles , 1994, Springer US.

[210]  D. Rendić,et al.  Expression of eukaryotic glycosyltransferases in the yeast Pichia pastoris. , 2003, Biochimie.

[211]  R. Savino,et al.  Smart trypsin adsorption into N-(2-aminoethyl)-3-aminopropyl-modified mesoporous silica for ultra fast protein digestion. , 2010, Chemistry.

[212]  F. Llaneras,et al.  An interval approach for dealing with flux distributions and elementary modes activity patterns. , 2007, Journal of theoretical biology.

[213]  P. Pifferi,et al.  On the use of chitosan-immobilized β-glucosidase in wine-making: kinetics and enzyme inhibition , 1998 .

[214]  U. Sauer,et al.  Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli , 2007, Molecular systems biology.

[215]  D. Ramón,et al.  Hierarchical bimodal porous silicas and organosilicas for enzyme immobilization , 2005 .

[216]  G. Casadoro,et al.  Secretion, purification and activity of two recombinant pepper endo‐β‐1,4‐glucanases expressed in the yeast Pichia pastoris , 1998, FEBS letters.

[217]  R Fehrenbach,et al.  On-line biomass monitoring by capacitance measurement. , 1992, Journal of biotechnology.

[218]  Saroj K. Mishra,et al.  Purification and characterization of two beta-glucosidases from a thermo-tolerant yeast Pichia etchellsii. , 2003, Biochimica et biophysica acta.

[219]  A. Herscovics,et al.  Molecular cloning, chromosomal mapping and tissue-specific expression of a novel human alpha1,2-mannosidase gene involved in N-glycan maturation. , 1998, Glycobiology.

[220]  W. V. van Zyl,et al.  Cloning and expression of the α–L-arabinofuranosidase gene (ABF2) of Aspergillus niger in Saccharomyces cerevisiae , 1996, Applied Microbiology and Biotechnology.

[221]  A. Querol,et al.  Construction of a recombinant wine yeast strain expressing beta-(1,4)-endoglucanase and its use in microvinification processes , 1993, Applied and environmental microbiology.

[222]  D. Fell,et al.  A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks , 2000, Nature Biotechnology.

[223]  R. Montesino,et al.  Variation in N-linked oligosaccharide structures on heterologous proteins secreted by the methylotrophic yeast Pichia pastoris. , 1998, Protein expression and purification.

[224]  T. Tani,et al.  Production and Characterization of Recombinant Phanerochaete chrysosporium β-Glucosidase in the Methylotrophic Yeast Pichia pastoris , 2003 .

[225]  S. Kuzmanova,et al.  Omjer reakcija transgalaktozilacije i hidrolize različitih β-galaktozidaza što kataliziraju sintezu alkil-β-galaktozida u monofaznim alkoholnim medijima , 2008 .

[226]  Antonio Sala,et al.  A possibilistic framework for constraint-based metabolic flux analysis , 2009, BMC Systems Biology.

[227]  Hiroshi Shimizu,et al.  Metabolic engineering--integrating methodologies of molecular breeding and bioprocess systems engineering. , 2002, Journal of bioscience and bioengineering.

[228]  T. Teeri,et al.  Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. , 2000, Biotechnology and bioengineering.

[229]  K. Moremen,et al.  Cloning, expression, purification, and characterization of the acid alpha-mannosidase from Trypanosoma cruzi. , 1998, Glycobiology.

[230]  Sven-Olof Enfors,et al.  Oxygen-limited fed-batch process: an alternative control for Pichia pastoris recombinant protein processes , 2005, Bioprocess and biosystems engineering.

[231]  R. Plantier-Royon,et al.  Enzymatic synthesis of alkyl arabinofuranosides using a thermostable α-L-arabinofuranosidase , 2002 .

[232]  E. Komives,et al.  Continuous production of thrombomodulin from a Pichia pastoris fermentation , 1996 .

[233]  F. Klis,et al.  A new tool for studying the molecular architecture of the fungal cell wall: one-step purification of recombinant trichoderma beta-(1-6)-glucanase expressed in Pichia pastoris. , 1998, Biochimica et biophysica acta.

[234]  G. Rao,et al.  Improvement of Escherichia coli microaerobic oxygen metabolism by Vitreoscilla hemoglobin: New insights from NAD(P)H fluorescence and culture redox potential , 1995, Biotechnology and bioengineering.

[235]  J. Nielsen,et al.  Mathematical modelling of metabolism. , 2000, Current opinion in biotechnology.

[236]  U. Sauer,et al.  Metabolic fluxes in riboflavin-producing Bacillus subtilis , 1997, Nature Biotechnology.

[237]  J. Cregg,et al.  Heterologous protein expression in the methylotrophic yeast Pichia pastoris. , 2000, FEMS microbiology reviews.

[238]  G. Fia,et al.  Study of β‐glucosidase production by wine‐related yeasts during alcoholic fermentation. A new rapid fluorimetric method to determine enzymatic activity , 2005, Journal of applied microbiology.

[239]  S Klamt,et al.  Algorithmic approaches for computing elementary modes in large biochemical reaction networks. , 2005, Systems biology.

[240]  Y. Turan,et al.  Purification and Characterization of an Intracellular β-Glucosidase from the Methylotrophic Yeast Pichia pastoris , 2005, Biochemistry (Moscow).

[241]  Merja Penttilä,et al.  Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. , 2003, Metabolic engineering.

[242]  R. Berger Biotechnology of flavours—the next generation , 2009, Biotechnology Letters.

[243]  Thomas Szyperski,et al.  Amino acid biosynthesis and metabolic flux profiling of Pichia pastoris. , 2004, European journal of biochemistry.

[244]  U. Sauer,et al.  High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. , 2004, Analytical biochemistry.

[245]  Michael Sauer,et al.  The effect of temperature on the proteome of recombinant Pichia pastoris. , 2009, Journal of proteome research.

[246]  P. Roepstorff,et al.  Overexpression, purification, and characterization of recombinant barley alpha-amylases 1 and 2 secreted by the methylotrophic yeast Pichia pastoris. , 1996, Protein expression and purification.

[247]  H. M. Tsuchiya,et al.  Mathematical Models for Fermentation Processes , 1970 .

[248]  K. Palmu,et al.  Expression in Pichia pastorisand Purification of Aspergillus awamoriGlucoamylase Catalytic Domain , 1997 .

[249]  S. Decker,et al.  Immobilization of Fungal β-Glucosidase on Silica Gel and Kaolin Carriers , 2008, Applied biochemistry and biotechnology.

[250]  J. Cregg,et al.  Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris , 1989, Molecular and cellular biology.

[251]  Xiangshan Zhou,et al.  Decrease of proteolytic degradation of recombinant hirudin produced by Pichia pastoris by controlling the specific growth rate , 2002, Biotechnology Letters.

[252]  D. Zopf,et al.  Oligosaccharide anti-infective agents , 1996, The Lancet.

[253]  Issam Smaali,et al.  Fungus β-glycosidases: immobilization and use in alkyl-β-glycoside synthesis , 2004 .

[254]  R. Beavis,et al.  Structural studies of alpha-N-acetylgalactosaminidase: effect of glycosylation on the level of expression, secretion efficiency, and enzyme activity. , 1998, Archives of biochemistry and biophysics.

[255]  J. Visser,et al.  Induction, purification and characterisation of arabinases produced by Aspergillus niger , 1991, Archives of Microbiology.

[256]  M. Hartmann,et al.  Covalent Anchoring of Chloroperoxidase and Glucose Oxidase on the Mesoporous Molecular Sieve SBA-15 , 2010, International journal of molecular sciences.

[257]  P. Luisi,et al.  Enzyme immobilization in silica-hardened organogels. , 2001, Biotechnology and bioengineering.

[258]  E. Salatelli,et al.  Immobilization of the glycosidases: α-l-arabinofuranosidase and β-d-glucopyranosidase from Aspergillus niger on a chitosan derivative to increase the aroma of wine. Part II , 1998 .

[259]  S. Withers,et al.  Enzymatic synthesis of disaccharides using Agrobacterium sp. β-glucosidase , 1997 .

[260]  B. Hélène,et al.  High-level secretory production of recombinant porcine follicle-stimulating hormone by Pichia pastoris , 2001 .

[261]  Aina Solà i Rodrigo Estudi del metabolisme central del carboni de Pichia pastoris , 2006 .

[262]  M. Nimtz,et al.  Characterization of the oligosaccharides assembled on the Pichia pastoris-expressed recombinant aspartic protease. , 1999, Glycobiology.

[263]  P. Roepstorff,et al.  Overexpression and characterization of Aspergillus awamori wild-type and mutant glucoamylase secreted by the methylotrophic yeast Pichia pastoris: comparison with wild-type recombinant glucoamylase produced using Saccharomyces cerevisiae and Aspergillus niger as hosts. , 1997, Protein expression and purification.

[264]  Stephen G Oliver,et al.  Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: Effects of methanol feeding rate , 2010, Biotechnology and bioengineering.

[265]  K. Nickerson,et al.  Pichia pastoris fermentation optimization: energy state and testing a growth-associated model , 2006, Applied Microbiology and Biotechnology.

[266]  Baohong Liu,et al.  Characterization of immobilization of an enzyme in a modified Y zeolite matrix and its application to an amperometric glucose biosensor. , 1997, Analytical chemistry.

[267]  Ruchika Sharma,et al.  Approaches for refining heterologous protein production in filamentous fungi , 2009 .

[268]  B. Palsson Systems Biology: Properties of Reconstructed Networks , 2006 .

[269]  A. Corma,et al.  Electrostatic and covalent immobilisation of enzymes on ITQ-6 delaminated zeolitic materials , 2001 .

[270]  Luis González-Candelas,et al.  Identification of a novel pelD gene expressed uniquely in planta by Fusarium solani f. sp. pisi (Nectria haematococca, mating type VI) and characterization of its protein product as an endo-pectate lyase. , 1996, Archives of biochemistry and biophysics.

[271]  M. Jeya,et al.  Covalent immobilization of β-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles , 2010, Applied Microbiology and Biotechnology.

[272]  Francisco Valero,et al.  A simple model‐based control for Pichia pastoris allows a more efficient heterologous protein production bioprocess , 2006, Biotechnology and bioengineering.

[273]  N. Shibuya,et al.  A cell wall-bound β-glucosidase from germinated rice : Purification and properties , 1998 .

[274]  P. Riccio,et al.  Extraction and immobilization in one step of two β-glucosidases released from a yeast strain of Debaryomyces hansenii , 1999 .

[275]  S. Nagai,et al.  Purification and Properties of β-Glucosidase from Candida pelliculosa var. acetaetherius , 1985 .

[276]  Sang Yup Lee,et al.  Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production. , 2010, Biotechnology journal.

[277]  R. Skadsen,et al.  Expression of enzymatically active, recombinant barley α-glucosidase in yeast and immunological detection of α-glucosidase from seed tissue , 1998, Plant Molecular Biology.

[278]  Pınar Özkan,et al.  Metabolic flux analysis of recombinant protein overproduction in Escherichia coli , 2005 .

[279]  P. Pifferi,et al.  Immobilization of β-glucosidase from a commercial preparation. Part 2. Optimization of the immobilization process on chitosan , 1996 .

[280]  Naoyuki Taniguchi,et al.  Functional roles of N‐glycans in cell signaling and cell adhesion in cancer , 2008, Cancer science.

[281]  D. F. M. Muñoz,et al.  A simple structured model for recombinant IDShr protein production in Pichia pastoris , 2008, Biotechnology Letters.

[282]  F. Arnold,et al.  Functional expression of horseradish peroxidase in Saccharomyces cerevisiae and Pichia pastoris. , 2000, Protein engineering.

[283]  Luis González-Candelas,et al.  Expression in a wine yeast strain of the Aspergillus niger abfB gene. , 1996, FEMS microbiology letters.

[284]  M. Kamat,et al.  Preparation, characterization and application of Aspergillus sp. xylanase immobilized on Eudragit S-100. , 1998, Journal of biotechnology.

[285]  Alfonso V. Carrascosa,et al.  The immobilization of a thermophilic β-galactosidase on Sepabeads supports decreases product inhibition: Complete hydrolysis of lactose in dairy products , 2003 .