Scaling Effect on Unipolar and Bipolar Resistive Switching of Metal Oxides

Electrically driven resistance change in metal oxides opens up an interdisciplinary research field for next-generation non-volatile memory. Resistive switching exhibits an electrical polarity dependent “bipolar-switching” and a polarity independent “unipolar-switching”, however tailoring the electrical polarity has been a challenging issue. Here we demonstrate a scaling effect on the emergence of the electrical polarity by examining the resistive switching behaviors of Pt/oxide/Pt junctions over 8 orders of magnitudes in the areas. We show that the emergence of two electrical polarities can be categorised as a diagram of an electric field and a cell area. This trend is qualitatively common for various oxides including NiOx, CoOx, and TiO2-x. We reveal the intrinsic difference between unipolar switching and bipolar switching on the area dependence, which causes a diversity of an electrical polarity for various resistive switching devices with different geometries. This will provide a foundation for tailoring resistive switching behaviors of metal oxides.

[1]  S. Tagawa,et al.  Effect of the heterointerface on transport properties of in situ formed MgO/titanate heterostructured nanowires. , 2008, Journal of the American Chemical Society.

[2]  R. Waser,et al.  Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack , 2007 .

[3]  G. I. Meijer,et al.  Who Wins the Nonvolatile Memory Race? , 2008, Science.

[4]  A. Hirata,et al.  Specific surface effect on transport properties of NiO/MgO heterostructured nanowires , 2009 .

[5]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .

[6]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[7]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[8]  B. Park,et al.  Prominent thermodynamical interaction with surroundings on nanoscale memristive switching of metal oxides. , 2012, Nano letters.

[9]  M. Taniguchi,et al.  Crucial role of doping dynamics on transport properties of Sb-doped SnO2 nanowires , 2009 .

[10]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[11]  Tomoji Kawai,et al.  Intrinsic mechanisms of memristive switching. , 2011, Nano letters.

[12]  J. O'dwyer,et al.  Theory of Dielectric Breakdown in Solids , 1969 .

[13]  K. Nagashima,et al.  Unipolar resistive switching characteristics of room temperature grown SnO2 thin films , 2009 .

[14]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[15]  Tomoji Kawai,et al.  Spatial nonuniformity in resistive-switching memory effects of NiO. , 2011, Journal of the American Chemical Society.

[16]  Tomoji Kawai,et al.  Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. , 2009, Journal of the American Chemical Society.

[17]  J. Stathis,et al.  Dielectric breakdown mechanisms in gate oxides , 2005 .

[18]  Masanori Kawai,et al.  Thermally formed conducting filaments in a single-crystalline NiO thin film , 2010 .

[19]  K. Nagashima,et al.  Interfacial effect on metal/oxide nanowire junctions , 2010 .

[20]  Tomoji Kawai,et al.  Resistive-switching memory effects of NiO nanowire/metal junctions. , 2010, Journal of the American Chemical Society.

[21]  Massimiliano Di Ventra,et al.  Memristive model of amoeba learning. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[23]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[24]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[25]  B Kahng,et al.  Scaling theory for unipolar resistance switching. , 2010, Physical review letters.

[26]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .

[27]  B. Park,et al.  Dual defects of cation and anion in memristive nonvolatile memory of metal oxides. , 2012, Journal of the American Chemical Society.

[28]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[29]  Masateru Taniguchi,et al.  Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. , 2010, Nano letters.

[30]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[31]  Massimiliano Di Ventra,et al.  Memristive model of amoeba’s learning , 2008 .

[32]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[33]  L. Chua Memristor-The missing circuit element , 1971 .

[34]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[35]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.