Analytical analysis of the vibrational tristable energy harvester with a RL resonant circuit

In this paper, analytical analysis of the vibrational tristable energy harvester with a RL resonant circuit is presented. The analytical solutions of the steady-state response displacement and the steady-state output voltage are derived via the method of multiple scales. The influence mechanism of the excitation amplitude and frequency, the electromechanical coupling coefficient, the damping and the detuning parameters on the dynamic response characteristics and the output voltage is studied. In order to enhance the energy harvesting performance, the appropriate choice of the excitation amplitude and the electromechanical coupling coefficient is discussed.

[1]  Bruno Ando,et al.  Analysis of two dimensional, wide-band, bistable vibration energy harvester , 2013 .

[2]  A. Erturk,et al.  On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion , 2014 .

[3]  B. Mann,et al.  Reversible hysteresis for broadband magnetopiezoelastic energy harvesting , 2009 .

[4]  P Woafo,et al.  Analysis of tristable energy harvesting system having fractional order viscoelastic material. , 2015, Chaos.

[5]  Daniel J. Inman,et al.  Impact-induced high-energy orbits of nonlinear energy harvesters , 2015 .

[6]  P. Woafo,et al.  Chaos in a new bistable rotating electromechanical system , 2016 .

[7]  Xingjian Jing,et al.  A comprehensive review on vibration energy harvesting: Modelling and realization , 2017 .

[8]  Konstantin Turitsyn,et al.  Robust and adaptive control of coexisting attractors in nonlinear vibratory energy harvesters , 2018 .

[9]  G. Litak,et al.  Nonlinear analysis of energy harvesting systems with fractional order physical properties , 2015 .

[10]  Li Haitao,et al.  Dynamics and coherence resonance of tri-stable energy harvesting system , 2015 .

[11]  Shengxi Zhou,et al.  Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting , 2018, Commun. Nonlinear Sci. Numer. Simul..

[12]  Grzegorz Litak,et al.  ENERGY HARVESTING IN A MAGNETOPIEZOELASTIC SYSTEM DRIVEN BY RANDOM EXCITATIONS WITH UNIFORM AND GAUSSIAN DISTRIBUTIONS , 2011 .

[13]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[14]  P. Hagedorn,et al.  A piezoelectric bistable plate for nonlinear broadband energy harvesting , 2010 .

[15]  Pilkee Kim,et al.  Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester , 2015 .

[16]  B. Mann,et al.  Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator , 2010 .

[17]  Grzegorz Litak,et al.  Theoretical analysis of multi-stable energy harvesters with high-order stiffness terms , 2019, Commun. Nonlinear Sci. Numer. Simul..

[18]  M. Friswell,et al.  Multiple solutions and corresponding power output of a nonlinear bistable piezoelectric energy harvester , 2016 .

[19]  Shengxi Zhou,et al.  High-Performance Piezoelectric Energy Harvesters and Their Applications , 2018 .

[20]  Alper Erturk,et al.  Enhanced broadband piezoelectric energy harvesting using rotatable magnets , 2013 .

[21]  Grzegorz Litak,et al.  Magnetopiezoelastic energy harvesting driven by random excitations , 2010 .

[22]  A. Amann,et al.  Surfing the High Energy Output Branch of Nonlinear Energy Harvesters. , 2016, Physical review letters.

[23]  Kexiang Wei,et al.  A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach , 2017 .

[24]  Kais Atallah,et al.  The benefits of Duffing-type nonlinearities and electrical optimisation of a mono-stable energy harvester under white Gaussian excitations , 2012 .

[25]  M. Siewe Siewe,et al.  Controllable parametric excitation effect on linear and nonlinear vibrational resonances in the dynamics of a buckled beam , 2018, Commun. Nonlinear Sci. Numer. Simul..

[26]  Junyi Cao,et al.  Broadband tristable energy harvester: Modeling and experiment verification , 2014 .

[27]  D. Inman,et al.  A piezomagnetoelastic structure for broadband vibration energy harvesting , 2009 .

[28]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[29]  Li-Qun Chen,et al.  A Broadband Internally-Resonant Vibratory Energy Harvester , 2016 .

[30]  Dongmei Huang,et al.  Performance characteristics of a real-power viscoelastic isolation system under delayed PPF control and base excitation , 2017 .

[31]  Lihua Tang,et al.  Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations , 2017 .

[32]  Bo Yan,et al.  A Novel Nonlinear Piezoelectric Energy Harvesting System Based on Linear-Element Coupling: Design, Modeling and Dynamic Analysis , 2018, Sensors.

[33]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[34]  Xiang Li,et al.  Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester , 2017 .

[35]  Bo Yan,et al.  Nonlinear Analysis of the Tristable Energy Harvester with a Resonant Circuit for Performance Enhancement , 2018, Int. J. Bifurc. Chaos.

[36]  Mohammed F. Daqaq,et al.  Characterizing the effective bandwidth of tri-stable energy harvesters , 2017 .

[37]  Li-Qun Chen,et al.  Internal Resonance Energy Harvesting , 2015 .