Langevin models of turbulence: Renormalization group, distant interaction algorithms or rapid distortion theory?

A new dynamical turbulence model is validated by comparisons of its numerical simulations with fully resolved, direct numerical simulations (DNS) of the Navier–Stokes equations in three-dimensional, isotropic, homogeneous conditions. In this model the small-scale velocities are computed using a Langevin, linear, inhomogeneous, stochastic equation that is derived from a quasi-linear approximation of the Navier–Stokes equations, in the spirit of rapid distortion theory (RDT). The values of the turbulent viscosity involved in our Langevin model are compared with a theoretical prescription based on the renormalization group and the distant interaction algorithms (DSTA) model. We show that the empirical turbulent viscosities derived from simulations of the Langevin model are in good quantitative agreement with the DSTA predictions. Finally, Langevin simulations are compared with DNS and large eddy simulations based on the eddy-damped quasi-normal Markovian closure. The Langevin RDT model is able to reproduce t...

[1]  J. A. Domaradzki,et al.  The subgrid-scale estimation model for high Reynolds number turbulence , 2000 .

[2]  M. Lesieur,et al.  Parameterization of Small Scales of Three-Dimensional Isotropic Turbulence Utilizing Spectral Closures , 1981 .

[3]  Anomalous scaling in homogeneous isotropic turbulence , 2000, physics/0012047.

[4]  Uriel Frisch,et al.  d-dimensional turbulence , 1978 .

[5]  E. Saiki,et al.  A subgrid-scale model based on the estimation of unresolved scales of turbulence , 1997 .

[6]  Geoffrey Ingram Taylor,et al.  Statistical theory of turbulenc , 1935, Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences.

[7]  B. Dubrulle,et al.  Nonlinear RDT theory of near-wall turbulence , 2000 .

[8]  B. Dubrulle,et al.  Dynamical modeling of sub-grid scales in 2D turbulence , 2000 .

[9]  W. Mccomb,et al.  The physics of fluid turbulence. , 1990 .

[10]  Jackson R. Herring,et al.  Comparison of some approximations for isotropic turbulence , 1972 .

[11]  J. Brasseur,et al.  THE RESPONSE OF ISOTROPIC TURBULENCE TO ISOTROPIC AND ANISOTROPIC FORCING AT THE LARGE SCALES , 1991 .

[12]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986 .

[13]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .

[14]  R. Kraichnan Inertial-range transfer in two- and three-dimensional turbulence , 1971, Journal of Fluid Mechanics.

[15]  V. Canuto,et al.  Dynamical model for turbulence. III. Numerical results , 1996 .

[16]  B. Dubrulle,et al.  A New Dynamical Subgrid Model for the Planetary Surface Layer. Part I: The Model and A Priori Tests , 2002 .

[17]  P. Ioannou,et al.  Stochastic forcing of the linearized Navier–Stokes equations , 1993 .

[18]  Wei Liu,et al.  Energy transfer in numerically simulated wall‐bounded turbulent flows , 1994 .

[19]  M. S. Dubovikov,et al.  A dynamical model for turbulence. I. General formalism , 1996 .

[20]  Wei Liu,et al.  An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence , 1993 .

[21]  Marc Brachet,et al.  The dynamics of freely decaying two-dimensional turbulence , 1988, Journal of Fluid Mechanics.

[22]  Scaling laws prediction from a solvable model of turbulent thermal convection , 2000, 1106.1722.

[23]  J. Gani,et al.  Statistical Models and Turbulence. , 1972 .

[24]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986, Physical review letters.

[25]  Nonlocality and intermittency in three-dimensional turbulence , 2001, physics/0101036.

[26]  Robert H. Kraichnan,et al.  An interpretation of the Yakhot–Orszag turbulence theory , 1987 .

[27]  Robert H. Kraichnan,et al.  Kolmogorov's Hypotheses and Eulerian Turbulence Theory , 1964 .

[28]  B. Dubrulle,et al.  Nonlocality of interaction of scales in the dynamics of 2D incompressible fluids , 1999 .

[29]  B. Dubrulle,et al.  A New Dynamical Subgrid Model for the Planetary Surface Layer. Part II: Analytical Computation of Fluxes, Mean Profiles, and Variances , 2002 .

[30]  V. Canuto,et al.  A dynamical model for turbulence. II. Shear‐driven flows , 1996 .

[31]  A. Sain,et al.  Turbulence and Multiscaling in the Randomly Forced Navier-Stokes Equation , 1997, chao-dyn/9801002.

[32]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[33]  A. Townsend The Structure of Turbulent Shear Flow , 1975 .

[34]  G. Eyink The renormalization group method in statistical hydrodynamics , 1994 .

[35]  J. Domaradzki,et al.  The subgrid-scale estimation model in the physical space representation , 1999 .

[36]  B. Dubrulle,et al.  A dynamic subfilter-scale model for plane parallel flows , 2001 .

[37]  David R. Nelson,et al.  Long-Time Tails and the Large-Eddy Behavior of a Randomly Stirred Fluid , 1976 .