9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks

Thin-film solar cells using Cu2ZnSn(S,Se)4 absorber materials continue to attract increasing attention. The synthesis of kesterite Cu2ZnSnS4 nanoparticles by a modified method of hot injection is explained. Characterization of the nanoparticles by energy dispersive X-ray spectroscopy, X-ray diffraction, Raman, and transmission electron microscopy is presented and discussed. When suspended in an ink, coated, and processed into a device, the nanoparticles obtained by this synthesis achieve a total area (active area) efficiency of 9.0% (9.8%) using AM 1.5 illumination and light soaking. This improvement over the previous efficiency of 7.2% is attributed to the modified synthesis approach, as well as fine-tuned conditions for selenizing the coated nanoparticles into a dense absorber layer. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[2]  A. D. Cunha,et al.  Study of polycrystalline Cu2ZnSnS4 films by Raman scattering , 2011 .

[3]  J. M. Stewart,et al.  Kesterite, Cu<2) (Zn,Fe)SnS<4) , and stannite, Cu<2) (Fe,Zn)SnS<4) , structurally similar but distinct minerals , 1978 .

[4]  S. Schorr The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study , 2011 .

[5]  H. Sugimoto,et al.  Lifetime improvement for high efficiency Cu2ZnSnS4 submodules , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[6]  R. Miles,et al.  Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors , 2009 .

[7]  Marika Edoff,et al.  Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing , 2011 .

[8]  Rakesh Agrawal,et al.  Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. , 2009, Journal of the American Chemical Society.

[9]  Hideaki Araki,et al.  Development of CZTS-based thin film solar cells , 2009 .

[10]  Supratik Guha,et al.  Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber , 2013 .

[11]  Vahid Akhavan,et al.  Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics. , 2009, Journal of the American Chemical Society.

[12]  E. Aydil,et al.  Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments , 2012 .

[13]  M. Tovar,et al.  A neutron diffraction study of the stannite-kesterite solid solution series , 2007 .

[14]  Rommel Noufi,et al.  Co-Evaporated Cu2ZnSnSe4 Films and Devices , 2012 .

[15]  J. Yun,et al.  Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values , 2010 .

[16]  H. Nozaki,et al.  Crystal structure determination of solar cell materials: Cu2ZnSnS4 thin films using X-ray anomalous dispersion , 2012 .

[17]  A. Cabot,et al.  Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor. , 2012, Journal of the American Chemical Society.

[18]  Grain Size and Texture of Cu2ZnSnS4 Thin Films Synthesized by Cosputtering Binary Sulfides and Annealing: Effects of Processing Conditions and Sodium , 2011, 1110.1677.

[19]  Yang Yang,et al.  Novel Solution Processing of High‐Efficiency Earth‐Abundant Cu2ZnSn(S,Se)4 Solar Cells , 2012, Advanced materials.

[20]  V. Deline,et al.  Electrodeposited Cu2ZnSnSe4 thin film solar cell with 7% power conversion efficiency , 2014 .

[21]  B. Clemens,et al.  Investigating the Role of Grain Boundaries in CZTS and CZTSSe Thin Film Solar Cells with Scanning Probe Microscopy , 2012, Advanced materials.

[22]  M. Scarpulla,et al.  Temperature dependent conductivity of polycrystalline Cu2ZnSnS4 thin films , 2012 .

[23]  Supratik Guha,et al.  Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier , 2012 .

[24]  Lingyan Wang,et al.  Synthesis of size-controlled and shaped copper nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[25]  Rakesh Agrawal,et al.  Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. , 2010, Journal of the American Chemical Society.

[26]  Steven S. Hegedus,et al.  Thin‐film solar cells: device measurements and analysis , 2004 .

[27]  A. Walsh,et al.  Compositional dependence of structural and electronic properties of Cu(2)ZnSn(S,Se)(4) alloys for thin film solar cells , 2011 .

[28]  Yang Yang,et al.  Molecular solution approach to synthesize electronic quality Cu2ZnSnS4 thin films. , 2013, Journal of the American Chemical Society.

[29]  H. Hillhouse,et al.  Earth‐Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non‐Toxic Solvent , 2011 .

[30]  Kaushik Roy Choudhury,et al.  High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. , 2012, Journal of the American Chemical Society.

[31]  E. Aydil,et al.  Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy , 2011 .

[32]  J. Elam,et al.  Atomic Layer Deposition of the Quaternary Chalcogenide Cu2ZnSnS4 , 2012 .

[33]  B. Parkinson,et al.  Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. , 2009, Journal of the American Chemical Society.