Model Based Predictive Control of Fuel Cells

The solid oxide fuel cell power plant is known to be a potential alternative in the electric utility field. However, the output voltage of the solid oxide fuel cell changes with load variations. Model predictive control is part of a family of optimization based control methods, which are based on on-line optimization of future control moves. This paper proposes a model based controller for the regulation of a solid oxide fuel cell. Performances using both linear and fuzzy Hammerstein models are evaluated with constraints.

[1]  János Abonyi,et al.  Effective optimization for fuzzy model predictive control , 2004, IEEE Transactions on Fuzzy Systems.

[2]  B. Ninness,et al.  A unifying construction of orthonormal bases for system identification , 1997, IEEE Trans. Autom. Control..

[3]  K. Y. Lee,et al.  An Explicit Dynamic Model for Direct Reforming Carbonate Fuel Cell Stack , 2001, IEEE Power Engineering Review.

[4]  J. Abonyi,et al.  Local and global identification and interpretation of parameters in Takagi-Sugeno fuzzy models , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[5]  Francisco Jurado Fuzzy Logic Applied to the Inverter of a SOFC Power Plant , 2004 .

[6]  Ronald Soeterboek,et al.  Predictive Control: A Unified Approach , 1992 .

[7]  A. Gegov,et al.  Multilayer fuzzy control of multivariable processes by direct decomposition , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[8]  Francisco Jurado Experience with Non-Linear Model Identification for Fuel Cell Plants† , 2005 .

[9]  Carlos E. Garcia,et al.  Internal model control. A unifying review and some new results , 1982 .

[10]  Kwang Y. Lee,et al.  Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plant , 1999 .

[11]  J. Lu,et al.  An on-line identification algorithm for fuzzy systems , 1994 .

[12]  J. R. McDonald,et al.  An approach to the dynamic modelling of fuel cell characteristics for distributed generation operation , 2000, 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077).

[13]  Enrique Baeyens,et al.  Identification of block-oriented nonlinear systems using orthonormal bases , 2004 .

[14]  Robert Babuska,et al.  Fuzzy Modeling for Control , 1998 .

[15]  Francisco Jurado Modeling SOFC plants on the distribution system using identification algorithms , 2004 .

[16]  T. A. Badgwell,et al.  An Overview of Industrial Model Predictive Control Technology , 1997 .

[17]  A. Palazoglu,et al.  Nolinear model predictive control using Hammerstein models , 1997 .

[18]  S. C. Singhal,et al.  Progress in Tubular Solid Oxide Fuel Cell Technology , 1999 .

[19]  F. R. Foulkes,et al.  Fuel Cell Handbook , 1989 .

[20]  Magne Setnes,et al.  Rule-based modeling: precision and transparency , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[21]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[22]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[23]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  Min He,et al.  Fuzzy modeling and expert optimization control for industrial processes , 1996, IEEE Trans. Control. Syst. Technol..

[25]  Stephen A. Billings,et al.  Identi cation of a class of nonlinear systems using correlation analysis , 1978 .

[26]  Issam M. Kouatli A simplified fuzzy multivariable structure in a manufacturing environment , 1994, J. Intell. Manuf..

[27]  J. Q. Hu Generalized predictive control using a neuro-fuzzy model , 1999, Int. J. Syst. Sci..

[28]  J. Richalet,et al.  Industrial applications of model based predictive control , 1993, Autom..

[29]  Rolf Isermann,et al.  Predictive control based on local linear fuzzy models , 1998, Int. J. Syst. Sci..