Global optimization of grey-box computational systems using surrogate functions and application to highly constrained oil-field operations

Abstract This work presents recent advances within the AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems (ARGONAUT) framework, developed for optimization of systems which lack analytical forms and derivatives. A new parallel version of ARGONAUT (p-ARGONAUT) is introduced to solve high dimensional problems with a large number of constraints. This development is motivated by a challenging case study, namely the operation of an oilfield using water-flooding. The objective of this case study is the maximization of the Net Present Value over a five-year time horizon by manipulating the well pressures, while satisfying a set of complicating constraints related to water-cut limitations and water handling and storage. Dimensionality reduction is performed via the parametrization of the pressure control domain, which is then followed by global optimization of the constrained grey-box system. Results are presented for multiple case studies and the performance of p-ARGONAUT is compared to existing derivative-free optimization methods.

[1]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[2]  K. Willcox,et al.  Constrained multifidelity optimization using model calibration , 2012, Structural and Multidisciplinary Optimization.

[3]  Marco Sciandrone,et al.  Sequential Penalty Derivative-Free Methods for Nonlinear Constrained Optimization , 2010, SIAM J. Optim..

[4]  Robert Michael Lewis,et al.  A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds , 2002, SIAM J. Optim..

[5]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[6]  Charles Audet,et al.  A MADS Algorithm with a Progressive Barrier for Derivative-Free Nonlinear Programming , 2007 .

[7]  Christodoulos A. Floudas,et al.  ARGONAUT: AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems , 2017, Optim. Lett..

[8]  M. Patriksson,et al.  A method for simulation based optimization using radial basis functions , 2010 .

[9]  Ronald D. Haynes,et al.  Joint optimization of well placement and control for nonconventional well types , 2015 .

[10]  Sébastien Le Digabel,et al.  Use of quadratic models with mesh-adaptive direct search for constrained black box optimization , 2011, Optim. Methods Softw..

[11]  J. M. Martínez,et al.  Derivative-free methods for nonlinear programming with general lower-level constraints , 2011 .

[12]  Christine A. Shoemaker,et al.  SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems , 2013, Comput. Oper. Res..

[13]  Christodoulos A. Floudas,et al.  Dimensionality reduction for production optimization using polynomial approximations , 2017, Computational Geosciences.

[14]  Tapan Mukerji,et al.  Derivative-Free Optimization for Oil Field Operations , 2011, Computational Optimization and Applications in Engineering and Industry.

[15]  I. Grossmann,et al.  An algorithm for the use of surrogate models in modular flowsheet optimization , 2008 .

[16]  Katya Scheinberg,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[17]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[18]  Nélida E. Echebest,et al.  Inexact Restoration method for nonlinear optimization without derivatives , 2015, J. Comput. Appl. Math..

[19]  Sébastien Le Digabel,et al.  Algorithm xxx : NOMAD : Nonlinear Optimization with the MADS algorithm , 2010 .

[20]  M. Sasena,et al.  Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization , 2002 .

[21]  Eduardo Gildin,et al.  Model Order Reduction and Control Polynomial Approximation for Well-Control Production Optimization , 2017 .

[22]  D. Maguire The raster GIS design model: a profile of ERDAS , 1992 .

[23]  Denis José Schiozer,et al.  UNISIM-I: Synthetic Model for Reservoir Development and Management Applications , 2015 .

[24]  Christine A. Shoemaker,et al.  Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems , 2014, J. Glob. Optim..

[25]  Christodoulos A. Floudas,et al.  Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO , 2016, Eur. J. Oper. Res..

[26]  Salvador Pintos,et al.  Surrogate modeling-based optimization of SAGD processes , 2002 .

[27]  Louis J. Durlofsky,et al.  Generalized Field-Development Optimization With Derivative-Free Procedures , 2014 .

[28]  Gianni Di Pillo,et al.  A DIRECT-type approach for derivative-free constrained global optimization , 2016, Comput. Optim. Appl..

[29]  Geir Nævdal,et al.  Production Optimization Using Derivative Free Methods Applied to Brugge Field Case , 2014 .

[30]  Christodoulos A. Floudas,et al.  Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption , 2017, J. Glob. Optim..

[31]  Olav Møyner,et al.  MRST-AD - an Open-Source Framework for Rapid Prototyping and Evaluation of Reservoir Simulation Problems , 2015, ANSS 2015.

[32]  B. Foss,et al.  Nonlinear output constraints handling for production optimization of oil reservoirs , 2010, Computational Geosciences.

[33]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[34]  Sébastien Le Digabel,et al.  Modeling an Augmented Lagrangian for Blackbox Constrained Optimization , 2014, Technometrics.

[35]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[36]  Chaohui Chen,et al.  Closed-loop reservoir management on the Brugge test case , 2010 .

[37]  Ann Muggeridge,et al.  Recovery rates, enhanced oil recovery and technological limits , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  Stefano Lucidi,et al.  A Derivative-Free Approach to Constrained Multiobjective Nonsmooth Optimization , 2016, SIAM J. Optim..

[39]  Denis José Schiozer,et al.  Hybrid Optimization for Closed-Loop Reservoir Management , 2015, ANSS 2015.

[40]  Chunhong Wang,et al.  Production Optimization in Closed-Loop Reservoir Management , 2009 .

[41]  Silvana M. B. Afonso,et al.  Surrogate based optimal waterflooding management , 2013 .

[42]  Serge Gratton,et al.  A Merit Function Approach for Direct Search , 2014, SIAM J. Optim..

[43]  John P. Spivey,et al.  Pressure Transient Testing , 2003 .

[44]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[45]  Kaj-Mikael Björk,et al.  Some convexifications in global optimization of problems containing signomial terms , 2003, Comput. Chem. Eng..

[46]  José Mario Martínez,et al.  Constrained derivative-free optimization on thin domains , 2012, Journal of Global Optimization.

[47]  L. Durlofsky,et al.  A derivative-free methodology with local and global search for the constrained joint optimization of well locations and controls , 2014, Computational Geosciences.

[48]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[49]  Christodoulos A. Floudas,et al.  GloMIQO: Global mixed-integer quadratic optimizer , 2012, Journal of Global Optimization.

[50]  J. Jansen,et al.  Robust ensemble-based multi-objective optimization , 2014 .

[51]  Iftekhar A. Karimi,et al.  Process systems engineering perspective on the planning and development of oil fields , 2016 .

[52]  Arne Stolbjerg Drud,et al.  CONOPT - A Large-Scale GRG Code , 1994, INFORMS J. Comput..

[53]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[54]  Hui Zhao,et al.  Maximization of a Dynamic Quadratic Interpolation Model for Production Optimization , 2013 .

[55]  Mattias Björkman,et al.  Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions , 2000 .

[56]  Louis J. Durlofsky,et al.  Application of derivative-free methodologies to generally constrained oil production optimisation problems , 2011, Int. J. Math. Model. Numer. Optimisation.

[57]  Denis José Schiozer,et al.  UNISIM-I-D: Benchmark Studies for Oil Field Development and Production Strategy Selection , 2015 .

[58]  Christine A. Shoemaker,et al.  Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions , 2005, J. Glob. Optim..

[59]  Albert C. Reynolds,et al.  Augmented Lagrangian Method for Maximizing Expectation and Minimizing Risk for Optimal Well-Control Problems With Nonlinear Constraints , 2016 .