Under an iron sky: On the entropy at the start of the Universe

Abstract Curiously, our Universe was born in a low entropy state, with abundant free energy to power stars and life. The form that this free energy takes is usually thought to be gravitational: the Universe is almost perfectly smooth, and so can produce sources of energy as matter collapses under gravity. It has recently been argued that a more important source of low-entropy energy is nuclear: the Universe expands too fast to remain in nuclear statistical equilibrium, effectively shutting off nucleosynthesis in the first few minutes, providing leftover hydrogen as fuel for stars. Here, we fill in the astrophysical details of this scenario and seek the conditions under which a Universe will emerge from early nucleosynthesis as almost-purely iron. In so doing, we identify a hitherto-overlooked character in the story of the origin of the second law: matter–antimatter asymmetry.

[1]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[2]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[3]  Carlo Rovelli,et al.  Where Was Past Low-Entropy? , 2018, Entropy.

[4]  A. Arbey,et al.  AlterBBN v2: A public code for calculating Big-Bang nucleosynthesis constraints in alternative cosmologies , 2018, Comput. Phys. Commun..

[5]  P. Armitage A Brief Overview of Planet Formation , 2018, 1803.10526.

[6]  V. S. Aguirre Stellar evolution and modelling stars , 2017, 1711.04461.

[7]  J. Lippuner,et al.  SkyNet: A Modular Nuclear Reaction Network Library , 2017, 1706.06198.

[8]  M. Kusakabe,et al.  Introduction to Big Bang Nucleosynthesis and Modern Cosmology , 2017, 1706.03138.

[9]  Dean Rickles,et al.  The Ashgate companion to contemporary philosophy of physics , 2016 .

[10]  G. Lewis,et al.  Primordial Nucleosynthesis in the Rh = ct cosmology: Pouring cold water on the Simmering Universe , 2016, 1604.07460.

[11]  S. Goldstein,et al.  Is the Hypothesis About a Low Entropy Initial State of the Universe Necessary for Explaining the Arrow of Time , 2016, 1602.05601.

[12]  Matt Farr,et al.  Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics , 2015 .

[13]  C. Iliadis Nuclear Physics of Stars: Iliadis/Nuclear Physics of Stars , 2015 .

[14]  W. Zimdahl,et al.  Aspects of the cosmological “coincidence problem” , 2014, 1410.2509.

[15]  Marcel Arnould,et al.  Databases and tools for nuclear astrophysics applications BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN) , 2012, 1212.0628.

[16]  Eric Winsberg,et al.  Bumps on the Road to Here (from Eternity) , 2012, Entropy.

[17]  D. Wallace The Logic of the Past Hypothesis , 2011 .

[18]  T. Lebzelter,et al.  The Nuclear Network Generator NETGEN v10.0: a tool for nuclear astrophysics , 2011 .

[19]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[20]  David Wallace,et al.  Gravity, Entropy, and Cosmology: in Search of Clarity , 2009, The British Journal for the Philosophy of Science.

[21]  F. Timmes,et al.  Proton-rich Nuclear Statistical Equilibrium , 2008, 0808.2033.

[22]  R. Frigg,et al.  A Field Guide to Recent Work on the Foundations of Statistical Mechanics. , 2008, 0804.0399.

[23]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[24]  J. Earman The “Past Hypothesis”: Not even false , 2006 .

[25]  Carlos S. Frenk,et al.  The large-scale structure of the Universe , 2006, Nature.

[26]  R. Wald The arrow of time and the initial conditions of the universe , 2005, gr-qc/0507094.

[27]  A. Jorissen,et al.  BRUSLIB and NETGEN: the Brussels nuclear reaction rate library and nuclear network generator for astrophysics , 2005, astro-ph/0506584.

[28]  S. Carroll,et al.  Spontaneous inflation and the origin of the arrow of time , 2004, hep-th/0410270.

[29]  V. Mukhanov Nucleosynthesis Without Computer , 2003, astro-ph/0303073.

[30]  David Z. Albert,et al.  Time and Chance , 2000 .

[31]  A. Aguirre Cold big-bang cosmology as a counterexample to several anthropic arguments , 2001, astro-ph/0106143.

[32]  Joseph Silk,et al.  The Five Ages of the Universe: Inside the Physics of Eternity, by Fred Adams and Greg Laughlin , 2000 .

[33]  A. Aguirre Cold Big Bang Nucleogenesis , 1999 .

[34]  Huw Price,et al.  Time's Arrow & Archimedes' Point , 1997 .

[35]  Andrej Dmitrievich Sakharov,et al.  SPECIAL ISSUE: Violation of CP in variance, C asymmetry, and baryon asymmetry of the universe , 1991 .

[36]  Roger Penrose,et al.  Difficulties with Inflationary Cosmology a , 1989 .

[37]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[38]  R. Penrose The emperor's new mind: concerning computers, minds, and the laws of physics , 1989 .

[39]  R. Lathe Phd by thesis , 1988, Nature.

[40]  Michael S. Turner,et al.  The early Universe , 1981, Nature.

[41]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[42]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[43]  D. Carswell,et al.  Measurement of low level environmental tritium samples. , 1972, Journal of Physics E Scientific Instruments.

[44]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .

[45]  F. G. KENYON,et al.  Time and Chance , 1943, Nature.

[46]  Petri Virtanen,et al.  Leadership Development Fundamentals , 2020 .

[47]  Nuno C. Santos,et al.  Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds , 2017, 1709.00645.

[48]  Juan Antonio Belmonte,et al.  Handbook of Exoplanets , 2018 .

[49]  V. Mukhanov PHYS ICAL FOUNDAT IONS OF COSMOLOGY , 2006 .

[50]  F. Adams,et al.  The five ages of the universe : inside the physics of eternity , 1999 .

[51]  Huw Price,et al.  Time's Arrow and Archimedes’ Point , 1997 .

[52]  J. Bernstein,et al.  Cosmological helium production simplified , 1989 .

[53]  D. Clayton Principles of stellar evolution and nucleosynthesis , 1983 .

[54]  R. Penrose Singularities and time-asymmetry. , 1979 .

[55]  J. Lawrence The future history of the universe. , 1978 .

[56]  B. Carter Large Number Coincidences and the Anthropic Principle in Cosmology , 1974 .

[57]  M. Longair Confrontation of Cosmological Theories with Observational Data , 1974 .

[58]  A. Messiah Quantum Mechanics , 1961 .

[59]  E. Schrödinger What is life? : the physical aspect of the living cell , 1944 .