Integrating physical and genetic maps: from genomes to interaction networks

Physical and genetic mapping data have become as important to network biology as they once were to the Human Genome Project. Integrating physical and genetic networks currently faces several challenges: increasing the coverage of each type of network; establishing methods to assemble individual interaction measurements into contiguous pathway models; and annotating these pathways with detailed functional information. A particular challenge involves reconciling the wide variety of interaction types that are currently available. For this purpose, recent studies have sought to classify genetic and physical interactions along several complementary dimensions, such as ordered versus unordered, alleviating versus aggravating, and first versus second degree.

[1]  T. Ideker,et al.  Supporting Online Material for A Systems Approach to Mapping DNA Damage Response Pathways , 2006 .

[2]  R. Brent,et al.  Correlation of two-hybrid affinity data with in vitro measurements , 1995, Molecular and cellular biology.

[3]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[4]  Megan F. Cole,et al.  Genome-wide Map of Nucleosome Acetylation and Methylation in Yeast , 2005, Cell.

[5]  Sean R. Collins,et al.  A strategy for extracting and analyzing large-scale quantitative epistatic interaction data , 2006, Genome Biology.

[6]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[7]  Marc Vidal,et al.  Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-beta signaling network. , 2004, Molecular cell.

[8]  E. Klipp,et al.  Integrative model of the response of yeast to osmotic shock , 2005, Nature Biotechnology.

[9]  A. Beyer,et al.  Identification and characterization of protein subcomplexes in yeast , 2005, Proteomics.

[10]  Roger E Bumgarner,et al.  Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. , 2001, Science.

[11]  Christian A. Grove,et al.  A Gene-Centered C. elegans Protein-DNA Interaction Network , 2006, Cell.

[12]  C. Fauth,et al.  Classifying by colors: FISH-based genome analysis , 2001, Cytogenetic and Genome Research.

[13]  Ben Lehner,et al.  RNAi screens in Caenorhabditis elegans in a 96-well liquid format and their application to the systematic identification of genetic interactions , 2006, Nature Protocols.

[14]  S. Fields High‐throughput two‐hybrid analysis , 2005, The FEBS journal.

[15]  Albertha J. M. Walhout,et al.  Unraveling transcription regulatory networks by protein-DNA and protein-protein interaction mapping. , 2006, Genome research.

[16]  A. Sturtevant,et al.  THE LINEAR ARRANGEMENT OF SIX SEX-LINKED FACTORS IN DROSOPHILA, AS SHOWN BY THEIR MODE OF ASSOCIATION , 1913 .

[17]  P. Deloukas,et al.  Comparison of human genetic and sequence-based physical maps , 2001, Nature.

[18]  Brian D. Peyser,et al.  Gene function prediction from congruent synthetic lethal interactions in yeast , 2005, Molecular systems biology.

[19]  M. Gerstein,et al.  Global analysis of protein phosphorylation in yeast , 2005, Nature.

[20]  Lincoln Stein,et al.  Genome annotation: from sequence to biology , 2001, Nature Reviews Genetics.

[21]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[22]  E. Klipp,et al.  Mathematical modeling of intracellular signaling pathways , 2006, BMC Neuroscience.

[23]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[24]  Mark Gerstein,et al.  Predicting interactions in protein networks by completing defective cliques , 2006, Bioinform..

[25]  Ritsert C. Jansen,et al.  Studying complex biological systems using multifactorial perturbation , 2003, Nature Reviews Genetics.

[26]  G. Sumara,et al.  A Probabilistic Functional Network of Yeast Genes , 2004 .

[27]  Phil Green,et al.  Whole-genome disassembly , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  A. Philippakis,et al.  Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities , 2006, Nature Biotechnology.

[29]  Gregory W Carter,et al.  Disentangling information flow in the Ras-cAMP signaling network. , 2006, Genome research.

[30]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[31]  D. Eisenberg,et al.  Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Whelan The promise and the peril. , 1998, Tennessee medicine : journal of the Tennessee Medical Association.

[33]  T. Barrette,et al.  Probabilistic model of the human protein-protein interaction network , 2005, Nature Biotechnology.

[34]  T. Ideker,et al.  Modeling cellular machinery through biological network comparison , 2006, Nature Biotechnology.

[35]  Albert-László Barabási,et al.  Transcription factor modularity in a gene-centered C. elegans core neuronal protein-DNA interaction network. , 2007, Genome research.

[36]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[37]  Z. Weng,et al.  A Global Map of p53 Transcription-Factor Binding Sites in the Human Genome , 2006, Cell.

[38]  T. Hunter,et al.  The c-fos protein interacts with c-Jun AP-1 to stimulate transcription of AP-1 responsive genes , 1988, Cell.

[39]  Xin Wen,et al.  BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities , 2006, Nucleic Acids Res..

[40]  A. Hatzigeorgiou,et al.  A guide through present computational approaches for the identification of mammalian microRNA targets , 2006, Nature Methods.

[41]  Richard M Twyman,et al.  Techniques patents for SNP genotyping. , 2003, Pharmacogenomics.

[42]  E. Génin,et al.  Are genome-wide association studies all that we need to dissect the genetic component of complex human diseases? , 2007, European Journal of Human Genetics.

[43]  Vesteinn Thorsson,et al.  Prediction of phenotype and gene expression for combinations of mutations. , 2007, Molecular systems biology.

[44]  H. Bussey,et al.  Exploring genetic interactions and networks with yeast , 2007, Nature Reviews Genetics.

[45]  Stefan Wiemann,et al.  Combinatorial RNAi for quantitative protein network analysis , 2007, Proceedings of the National Academy of Sciences.

[46]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[47]  C. Nusbaum,et al.  Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. , 2006, Genome research.

[48]  John D. Storey,et al.  Genetic interactions between polymorphisms that affect gene expression in yeast , 2005, Nature.

[49]  Li Wang,et al.  An integrative approach for causal gene identification and gene regulatory pathway inference , 2006, ISMB.

[50]  D R Westhead,et al.  Petri Net representations in systems biology. , 2003, Biochemical Society transactions.

[51]  M. Vidal,et al.  A gateway-compatible yeast one-hybrid system. , 2004, Genome research.

[52]  T. Ideker,et al.  Systematic interpretation of genetic interactions using protein networks , 2005, Nature Biotechnology.

[53]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[54]  Lu Lu,et al.  WebQTL: rapid exploratory analysis of gene expression and genetic networks for brain and behavior , 2004, Nature Neuroscience.

[55]  A. Oberst Cells, Gels, and the Engines of Life , 2003, Cell Death and Differentiation.

[56]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  P. Srere,et al.  Complexes of sequential metabolic enzymes. , 1987, Annual review of biochemistry.

[59]  S. Jana,et al.  Simulation of quantitative characters from qualitatively acting genes , 2004, Theoretical and Applied Genetics.

[60]  J. Boeke,et al.  DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray , 2003, Nature Genetics.

[61]  Natasa Przulj,et al.  High-Throughput Mapping of a Dynamic Signaling Network in Mammalian Cells , 2005, Science.

[62]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[63]  R. Shamir,et al.  Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks , 2007, Molecular systems biology.

[64]  Leslie Roberts,et al.  Controversial From the Start , 2001, Science.

[65]  E Marshall,et al.  A History of the Human Genome Project , 2001, Science.

[66]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[67]  P. Phillips The language of gene interaction. , 1998, Genetics.

[68]  R. Myers,et al.  Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. , 1990, Science.

[69]  Hanah Margalit,et al.  Characterization and prediction of protein–protein interactions within and between complexes , 2006, Proceedings of the National Academy of Sciences.

[70]  E. Schadt,et al.  Thematic review series: Systems Biology Approaches to Metabolic and Cardiovascular Disorders. Reverse engineering gene networks to identify key drivers of complex disease phenotypes Published, JLR Papers in Press, October 1, 2006. , 2006, Journal of Lipid Research.

[71]  Yan Cui,et al.  Combining gene expression QTL mapping and phenotypic spectrum analysis to uncover gene regulatory relationships , 2006, Mammalian Genome.

[72]  John J. Wyrick,et al.  Genome-wide location and function of DNA binding proteins. , 2000, Science.

[73]  R. Stoughton,et al.  Genetics of gene expression surveyed in maize, mouse and man , 2003, Nature.

[74]  Matthew A. Hibbs,et al.  Finding function: evaluation methods for functional genomic data , 2006, BMC Genomics.

[75]  C. Mathews,et al.  The cell-bag of enzymes or network of channels? , 1993, Journal of bacteriology.

[76]  S. Henikoff,et al.  Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase , 2000, Nature Biotechnology.

[77]  T. Jaakkola,et al.  Validation and refinement of gene-regulatory pathways on a network of physical interactions , 2005, Genome Biology.

[78]  Roded Sharan,et al.  A direct comparison of protein interaction confidence assignment schemes , 2006, BMC Bioinformatics.

[79]  L. Avery,et al.  Ordering gene function: the interpretation of epistasis in regulatory hierarchies. , 1992, Trends in genetics : TIG.

[80]  Michael I. Jordan,et al.  Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Hemant K Tiwari,et al.  Problems with Genome-Wide Association Studies , 2007, Science.

[82]  Pall I. Olason,et al.  A human phenome-interactome network of protein complexes implicated in genetic disorders , 2007, Nature Biotechnology.

[83]  Tommi S. Jaakkola,et al.  Physical Network Models , 2004, J. Comput. Biol..

[84]  K. Downard,et al.  Ions of the interactome: The role of MS in the study of protein interactions in proteomics and structural biology , 2006, Proteomics.

[85]  Sean R. Collins,et al.  Toward a Comprehensive Atlas of the Physical Interactome of Saccharomyces cerevisiae*S , 2007, Molecular & Cellular Proteomics.

[86]  John Polanyi,et al.  In Support of Academic Freedom , 2007, Science.

[87]  Aldons J. Lusis,et al.  A thematic review series: systems biology approaches to metabolic and cardiovascular disorders , 2006, Journal of Lipid Research.

[88]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[89]  D. Goldberg,et al.  Assessing experimentally derived interactions in a small world , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[90]  D. Botstein,et al.  Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF , 2001, Nature.

[91]  G. Church,et al.  Modular epistasis in yeast metabolism , 2005, Nature Genetics.

[92]  S. L. Wong,et al.  Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network , 2005, Journal of biology.

[93]  Eric S. Lander,et al.  On the sequencing of the human genome , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[94]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[95]  Ronald W. Davis,et al.  Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions , 2007, Nature Genetics.

[96]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[97]  Dat H. Nguyen,et al.  Deciphering principles of transcription regulation in eukaryotic genomes , 2006, Molecular systems biology.

[98]  Enrico Petretto,et al.  Heritability and Tissue Specificity of Expression Quantitative Trait Loci , 2006, PLoS genetics.

[99]  R. Sharan,et al.  Transcriptional regulation of protein complexes within and across species , 2007, Proceedings of the National Academy of Sciences.

[100]  J M Gauthier,et al.  Protein--protein interaction maps: a lead towards cellular functions. , 2001, Trends in genetics : TIG.

[101]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[102]  Y. Hayashizaki,et al.  Protein-protein interaction panel using mouse full-length cDNAs. , 2001, Genome research.

[103]  J. Castle,et al.  An integrative genomics approach to infer causal associations between gene expression and disease , 2005, Nature Genetics.

[104]  Grant W. Brown,et al.  Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map , 2007, Nature.

[105]  Sean R. Collins,et al.  Exploration of the Function and Organization of the Yeast Early Secretory Pathway through an Epistatic Miniarray Profile , 2005, Cell.

[106]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[107]  Jordan M. Komisarow,et al.  RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts , 2006, Nature Protocols.

[108]  X. Chen,et al.  The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells , 2006, Nature Genetics.

[109]  Trey Ideker,et al.  Integrated Assessment and Prediction of Transcription Factor Binding , 2006, PLoS Comput. Biol..

[110]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[111]  Andrew Emili,et al.  Navigating the Chaperone Network: An Integrative Map of Physical and Genetic Interactions Mediated by the Hsp90 Chaperone , 2005, Cell.

[112]  Paul Shannon,et al.  Derivation of genetic interaction networks from quantitative phenotype data , 2005, Genome Biology.

[113]  Marc Vidal,et al.  Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis , 2005, Nature.

[114]  Arun K. Ramani,et al.  Protein interaction networks from yeast to human. , 2004, Current opinion in structural biology.

[115]  A. Fraser,et al.  Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways , 2006, Nature Genetics.

[116]  Patrick J. Killion,et al.  Genetic reconstruction of a functional transcriptional regulatory network , 2007, Nature Genetics.

[117]  S. Goss,et al.  New method for mapping genes in human chromosomes , 1975, Nature.

[118]  M. Spence,et al.  Analysis of human genetic linkage , 1986 .

[119]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.