Genomic Insights into Methanotrophy: The Complete Genome Sequence of Methylococcus capsulatus (Bath)

Methanotrophs are ubiquitous bacteria that can use the greenhouse gas methane as a sole carbon and energy source for growth, thus playing major roles in global carbon cycles, and in particular, substantially reducing emissions of biologically generated methane to the atmosphere. Despite their importance, and in contrast to organisms that play roles in other major parts of the carbon cycle such as photosynthesis, no genome-level studies have been published on the biology of methanotrophs. We report the first complete genome sequence to our knowledge from an obligate methanotroph, Methylococcus capsulatus (Bath), obtained by the shotgun sequencing approach. Analysis revealed a 3.3-Mb genome highly specialized for a methanotrophic lifestyle, including redundant pathways predicted to be involved in methanotrophy and duplicated genes for essential enzymes such as the methane monooxygenases. We used phylogenomic analysis, gene order information, and comparative analysis with the partially sequenced methylotroph Methylobacterium extorquens to detect genes of unknown function likely to be involved in methanotrophy and methylotrophy. Genome analysis suggests the ability of M. capsulatus to scavenge copper (including a previously unreported nonribosomal peptide synthetase) and to use copper in regulation of methanotrophy, but the exact regulatory mechanisms remain unclear. One of the most surprising outcomes of the project is evidence suggesting the existence of previously unsuspected metabolic flexibility in M. capsulatus, including an ability to grow on sugars, oxidize chemolithotrophic hydrogen and sulfur, and live under reduced oxygen tension, all of which have implications for methanotroph ecology. The availability of the complete genome of M. capsulatus (Bath) deepens our understanding of methanotroph biology and its relationship to global carbon cycles. We have gained evidence for greater metabolic flexibility than was previously known, and for genetic components that may have biotechnological potential.

[1]  D. Kelly,et al.  A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? , 2004, FEMS microbiology reviews.

[2]  T. Smith,et al.  Formaldehyde dehydrogenase preparations from Methylococcus capsulatus (Bath) comprise methanol dehydrogenase and methylene tetrahydromethanopterin dehydrogenase. , 2004, Microbiology.

[3]  Ling V. Sun,et al.  Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements , 2004, PLoS biology.

[4]  M. Lidstrom,et al.  Multiple Formate Dehydrogenase Enzymes in the Facultative Methylotroph Methylobacterium extorquens AM1 Are Dispensable for Growth on Methanol , 2004, Journal of bacteriology.

[5]  H. Dalton Ammonia oxidation by the methane oxidising bacterium Methylococcus capsulatus strain bath , 1977, Archives of Microbiology.

[6]  J. Murrell,et al.  Molecular genetics of methane oxidation , 2004, Biodegradation.

[7]  G. Sawers The hydrogenases and formate dehydrogenases ofEscherichia coli , 2004, Antonie van Leeuwenhoek.

[8]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[9]  Michael Y. Galperin,et al.  Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Tom W Muir,et al.  Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. , 2003, Journal of the American Chemical Society.

[11]  M. Kaleko,et al.  Synthesis of adenoviral targeting molecules by intein-mediated protein ligation , 2003, Gene Therapy.

[12]  K. Kovács,et al.  Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis. , 2003, Microbiology.

[13]  C. Rensing,et al.  Molecular Analysis of the Copper-Transporting Efflux System CusCFBA of Escherichia coli , 2003, Journal of bacteriology.

[14]  C. Fraser,et al.  Phylogenomics: Intersection of Evolution and Genomics , 2003, Science.

[15]  M. Solioz,et al.  Copper homeostasis in Enterococcus hirae. , 2003, FEMS microbiology reviews.

[16]  A. Lapidus,et al.  Methylotrophy in Methylobacterium extorquens AM1 from a Genomic Point of View , 2003, Journal of bacteriology.

[17]  J. Lamerdin,et al.  Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas europaea , 2003, Journal of bacteriology.

[18]  C. Anthony,et al.  The structure and mechanism of methanol dehydrogenase. , 2003, Biochimica et biophysica acta.

[19]  R. Brunham,et al.  Molecular Analysis of the Multiple GroEL Proteins of Chlamydiae , 2003, Journal of bacteriology.

[20]  W. Eisenreich,et al.  The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: Studies on the mechanisms of the reactions catalyzed by IspG and IspH protein , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  H. Dalton,et al.  The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein. , 2003, The Biochemical journal.

[22]  B. Rosen,et al.  Biochemical Characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase* , 2002, The Journal of Biological Chemistry.

[23]  H. Humphries,et al.  Expression of the class 1 outer-membrane protein of Neisseria meningitidis in Escherichia coli and purification using a self-cleavable affinity tag. , 2002, Protein expression and purification.

[24]  Julia A. Vorholt,et al.  Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria , 2002, Archives of Microbiology.

[25]  Ingeborg Holt,et al.  The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Eisen,et al.  Phylogenetic analysis and gene functional predictions: phylogenomics in action. , 2002, Theoretical population biology.

[27]  Darren A. Natale,et al.  The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Casjens,et al.  Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. , 2002, Journal of molecular biology.

[29]  Jacques Mahillon,et al.  Insertion Sequences revisited , 2002 .

[30]  K. Kovács,et al.  Detection and localization of two hydrogenases in Methylococcus capsulatus (Bath) and their potential role in methane metabolism , 2002, Archives of Microbiology.

[31]  J. Prosser,et al.  The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath) , 2002, Archives of Microbiology.

[32]  K. Kovács,et al.  Molecular characterization of structural genes coding for a membrane bound hydrogenase in Methylococcus capsulatus (Bath). , 2001, FEMS microbiology letters.

[33]  D. Söll,et al.  A Single Amidotransferase Forms Asparaginyl-tRNA and Glutaminyl-tRNA in Chlamydia trachomatis * , 2001, The Journal of Biological Chemistry.

[34]  Ryan C. Kunz,et al.  Membrane-Associated Quinoprotein Formaldehyde Dehydrogenase from Methylococcus capsulatus Bath , 2001, Journal of bacteriology.

[35]  J. Vorholt,et al.  Characterization of the formyltransferase from Methylobacterium extorquens AM1. , 2001, European journal of biochemistry.

[36]  B. Haas,et al.  A clustering method for repeat analysis in DNA sequences , 2001, Genome Biology.

[37]  S. Salzberg,et al.  Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae , 2001, Science.

[38]  D. Söll,et al.  A dual‐specific Glu‐tRNAGln and Asp‐tRNAAsn amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans , 2001, FEBS letters.

[39]  J A Eisen,et al.  Microbial Genes in the Human Genome: Lateral Transfer or Gene Loss? , 2001, Science.

[40]  C. Georgopoulos,et al.  DjlA Is a Third DnaK Co-chaperone of Escherichia coli, and DjlA-mediated Induction of Colanic Acid Capsule Requires DjlA-DnaK Interaction* , 2001, The Journal of Biological Chemistry.

[41]  M. Lidstrom,et al.  Expression of Individual Copies ofMethylococcus capsulatus Bath Particulate Methane Monooxygenase Genes , 2001, Journal of bacteriology.

[42]  S. Lippard,et al.  Crystal structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath) demonstrating geometrical variability at the dinuclear iron active site. , 2001, Journal of the American Chemical Society.

[43]  K. Saito,et al.  Molecular biology of the plastidic phosphorylated serine biosynthetic pathway in Arabidopsis thaliana , 2001, Amino Acids.

[44]  L. Møller,et al.  Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. , 2000, Gene.

[45]  B. Basu The particulate methane monooxygenase from Methylococcus capsulatus (Bath) , 2000 .

[46]  D. Söll,et al.  The heterotrimeric Thermus thermophilus Asp‐tRNAAsn amidotransferase can also generate Gln‐tRNAGln , 2000, FEBS letters.

[47]  J. Murrell,et al.  Regulation of expression of methane monooxygenases by copper ions. , 2000, Trends in microbiology.

[48]  S. Lippard,et al.  Sequencing and analysis of the Methylococcus capsulatus (Bath) soluble methane monooxygenase genes , 2000 .

[49]  C. Rensing,et al.  CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Salzberg,et al.  Optimized multiplex PCR: efficiently closing a whole-genome shotgun sequencing project. , 1999, Genomics.

[51]  M. Lidstrom,et al.  Distribution of Tetrahydromethanopterin-Dependent Enzymes in Methylotrophic Bacteria and Phylogeny of Methenyl Tetrahydromethanopterin Cyclohydrolases , 1999, Journal of bacteriology.

[52]  M. Lidstrom,et al.  Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. , 1999, Microbiology.

[53]  D. Eisenberg,et al.  Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[54]  C. Clépet,et al.  ThrH, a homoserine kinase isozyme with in vivo phosphoserine phosphatase activity in Pseudomonas aeruginosa. , 1999, Microbiology.

[55]  I S Roberts,et al.  Structure, assembly and regulation of expression of capsules in Escherichia coli , 1999, Molecular microbiology.

[56]  J. Zahn,et al.  High-Molecular-Mass Multi-c-Heme Cytochromes from Methylococcus capsulatus Bath , 1999, Journal of bacteriology.

[57]  H. Dalton,et al.  A low-molecular-mass protein from Methylococcus capsulatus (Bath) is responsible for the regulation of formaldehyde dehydrogenase activity in vitro. , 1999, Microbiology.

[58]  Peter J. Ell,et al.  The Challenge of the 21st Century , 1999 .

[59]  T. Storebakken,et al.  Digestibility of bacterial protein grown on natural gas in mink, pigs, chicken and Atlantic salmon , 1998 .

[60]  D. Söll,et al.  Glutamyl-tRNA(Gln) amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S. Salzberg,et al.  Skewed oligomers and origins of replication. , 1998, Gene.

[62]  J A Eisen,et al.  A phylogenomic study of the MutS family of proteins. , 1998, Nucleic acids research.

[63]  H. J. Kim,et al.  Copper-Binding Compounds from Methylosinus trichosporium OB3b , 1998, Journal of bacteriology.

[64]  R. H. Fillingame,et al.  Arrangement of the Multicopy H+-translocating Subunit c in the Membrane Sector of the Escherichia coliF1F0 ATP Synthase* , 1998, The Journal of Biological Chemistry.

[65]  S. Elliott,et al.  The Particulate Methane Monooxygenase from Methylococcus capsulatus (Bath) Is a Novel Copper-containing Three-subunit Enzyme , 1998, The Journal of Biological Chemistry.

[66]  D. Graham,et al.  Isolation of Copper Biochelates fromMethylosinus trichosporium OB3b and Soluble Methane Monooxygenase Mutants , 1998, Applied and Environmental Microbiology.

[67]  J A Eisen,et al.  Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. , 1998, Genome research.

[68]  S. Salzberg,et al.  Microbial gene identification using interpolated Markov models. , 1998, Nucleic acids research.

[69]  G. Church,et al.  Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics , 1997, Journal of bacteriology.

[70]  D. Söll,et al.  Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[71]  K. Gerdes,et al.  Copper‐dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium , 1997, Molecular Microbiology.

[72]  C. Anthony,et al.  Erratum to "The methanol oxidation genes mxaFJGIR (S) ACKLD in Methylobacterium extorquens" [FEMS Microbiol. Lett. 146 (1997) 31-38]. , 1997, FEMS microbiology letters.

[73]  C. Woese,et al.  Aminoacyl-tRNA synthesis in Archaea. , 1997, Nucleic acids symposium series.

[74]  C. Anthony,et al.  The methanol oxidation genes mxaFJGIR (S) ACKLD in Methylobacterium extorquens. , 1997, FEMS microbiology letters.

[75]  R. Fleischmann,et al.  Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.

[76]  J. Craig Venter,et al.  A new strategy for genome sequencing , 1996, Nature.

[77]  J. Lobry Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.

[78]  J. Zahn,et al.  Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath) , 1996, Journal of bacteriology.

[79]  Thomas E Hanson,et al.  Methanotrophic bacteria. , 1996, Microbiological reviews.

[80]  M. Lidstrom,et al.  The role of copper in the pMMO of Methylococcus capsulatus bath: a structural vs. catalytic function. , 1995, Journal of inorganic biochemistry.

[81]  R. Hendrix,et al.  Genetic basis of bacteriophage HK97 prohead assembly. , 1995, Journal of molecular biology.

[82]  Owen White,et al.  TIGR Assembler: A New Tool for Assembling Large Shotgun Sequencing Projects , 1995 .

[83]  M. Lidstrom,et al.  Genetics of the serine cycle in Methylobacterium extorquens AM1: identification, sequence, and mutation of three new genes involved in C1 assimilation, orf4, mtkA, and mtkB , 1994, Journal of bacteriology.

[84]  M. Lidstrom,et al.  The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). , 1994, The Journal of biological chemistry.

[85]  P. Gerhardt,et al.  Methods for general and molecular bacteriology , 1994 .

[86]  J. Lelieveld,et al.  Climate effects of atmospheric methane , 1993 .

[87]  L. Jahnke The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath). , 1992, FEMS microbiology letters.

[88]  Joan C. Woodward,et al.  Consumption of atmospheric methane by desert soils , 1992, Nature.

[89]  J. Murrell,et al.  Cloning of nitrogenase structural genes from the obligate methanotroph Methylococcus capsulatus (Bath). , 1991, FEMS microbiology letters.

[90]  M. Winkler,et al.  Metabolic relationships between pyridoxine (vitamin B6) and serine biosynthesis in Escherichia coli K-12 , 1990, Journal of bacteriology.

[91]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[92]  G. Salmond,et al.  The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath). , 1990, Gene.

[93]  L. Jahnke,et al.  Evidence for the synthesis of the multi-positional isomers of monounsaturated fatty acid in Methylococcus capsusatus by the anaerobic pathway. , 1989, FEMS microbiology letters.

[94]  Miron Livny,et al.  Condor-a hunter of idle workstations , 1988, [1988] Proceedings. The 8th International Conference on Distributed.

[95]  M. Lidstrom,et al.  Symbiosis of methylotrophic bacteria and deep-sea mussels , 1987, Nature.

[96]  R. S. Hanson,et al.  Variants of the Obligate Methanotroph Isolate 761M Capable of Growth on Glucose in the Absence of Methane , 1984, Applied and environmental microbiology.

[97]  J. Murrell,et al.  Nitrogen Fixation in Obligate Methanotrophs , 1983 .

[98]  C. Dow,et al.  Ribulose-1,5-bisphosphate Carboxylase/Oxygenase and Carbon Assimilation in Methylococcus capsulatus (Bath) , 1981 .

[99]  S. Cohen,et al.  Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[100]  H. Dalton,et al.  Purification and properties of an NAD(P)+-linked formaldehyde dehydrogenase from Methylococcus capsulatus (Bath). , 1978, Journal of General Microbiology.

[101]  R. Makula Phospholipid composition of methane-utilizing bacteria , 1978, Journal of bacteriology.

[102]  D. Ehhalt,et al.  Sources and sinks of atmospheric methane , 1978 .

[103]  I. S T I R L I N G A N D H O W A R D D A L T O N Purification and Properties of an NAD ( P ) +-linked Formaldehyde Dehydrogenase from Methylococcus capsulatus ( Bath ) , 1978 .

[104]  H. Dalton,et al.  The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. , 1977, The Biochemical journal.

[105]  A. Goldstein,et al.  Purification and properties , 1975 .

[106]  T. Ferenci,et al.  The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane. , 1974, The Biochemical journal.

[107]  D. Ehhalt The atmospheric cycle of methane , 1974 .

[108]  J. Lynch,et al.  Steroids and Squalene in Methylococcus capsulatus grown on Methane , 1971, Nature.

[109]  R. Whittenbury,et al.  Enrichment, isolation and some properties of methane-utilizing bacteria. , 1970, Journal of general microbiology.