The Most Dark-Matter-dominated Galaxies: Predicted Gamma-Ray Signals from the Faintest Milky Way Dwarfs

We use kinematic data from three new nearby, extremely low luminosity Milky Way dwarf galaxies (Ursa Major II, Willman 1, and Coma Berenices) to constrain the properties of their dark matter halos, and from these we make predictions for the γ-ray flux from annihilation of dark matter particles in these halos. We show that these ~103 L☉ dwarfs are the most dark-matter-dominated galaxies known, with total masses within 100 pc that are in excess of 106 M☉. Coupled with their relative proximity, their large masses imply that they should have mean γ-ray fluxes that are comparable to or greater than those of any other known satellite galaxy of the Milky Way. Our results are robust to both variations of the inner slope of the density profile and the effect of tidal interactions. The fluxes could be boosted by up to 2 orders of magnitude if we include the density enhancements caused by surviving dark matter substructure.

[1]  Michael Kuhlen,et al.  Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo , 2006, astro-ph/0611370.

[2]  The mass function and average mass-loss rate of dark matter subhaloes , 2005 .

[3]  N. W. Evans,et al.  A travel guide to the dark matter annihilation signal , 2003, astro-ph/0311145.

[4]  B. Willman,et al.  A Pair of Boötes: A New Milky Way Satellite , 2007, 0705.1378.

[5]  U. Washington,et al.  The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes , 2003, astro-ph/0311231.

[6]  Gary A. Mamon,et al.  Dark matter distribution in the Draco dwarf from velocity moments , 2004, astro-ph/0411694.

[7]  L. Hebb,et al.  Discovery of an unusual dwarf galaxy in the outskirts of the Milky Way , 2007 .

[8]  University of Durham,et al.  The effects of photoionization on galaxy formation – I. Model and results at z=0 , 2002 .

[9]  D. Weinberg,et al.  Reionization and the Abundance of Galactic Satellites , 2000, astro-ph/0002214.

[10]  James S. Bullock,et al.  Halo Substructure and the Power Spectrum , 2003 .

[11]  G. Beccari,et al.  The fraction of binary systems in the core of 13 low-density Galactic globular clusters , 2007, 0706.2288.

[12]  A. Tolley,et al.  Gravitational waves in a codimension two braneworld , 2005, hep-th/0511138.

[13]  Observability of gamma rays from neutralino annihilations in the Milky Way substructure , 2003, astro-ph/0309464.

[14]  M. Kamionkowski,et al.  Dark matter and the CACTUS gamma-ray excess from Draco , 2006, astro-ph/0601249.

[15]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[16]  D. Hooper,et al.  Limits on supersymmetric dark matter from EGRET observations of the galactic center region , 2002, astro-ph/0210617.

[17]  Dark Matter annihilation in Draco: new considerations of the expected gamma flux , 2007, astro-ph/0701426.

[18]  R. Fisher A Turbulent Interstellar Medium Origin of the Binary Period Distribution , 2003, astro-ph/0303280.

[19]  Joachim Stadel,et al.  Cusps in cold dark matter haloes , 2005 .

[20]  Michael Kuhlen,et al.  Redefining the Missing Satellites Problem , 2007, 0704.1817.

[21]  Gary A. Mamon,et al.  Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way , 2007 .

[22]  Mario Mateo,et al.  Internal Kinematics of the Fornax Dwarf Spheroidal Galaxy , 2005 .

[23]  K. Nishijima,et al.  Present status of the 7–10 m telescope of CANGAROO II , 1999 .

[24]  Alan McConnachie,et al.  The Cold Dark Matter Halos of Local Group Dwarf Spheroidals , 2007 .

[25]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[26]  The Detectability of neutralino clumps via atmospheric Cherenkov telescopes , 2002, astro-ph/0206040.

[27]  D. Hooper,et al.  Dark matter and gamma-rays from Draco: MAGIC, GLAST and CACTUS , 2005, hep-ph/0512317.

[28]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[29]  Mario Mateo,et al.  Velocity Dispersion Profiles of Seven Dwarf Spheroidal Galaxies , 2007, 0708.0010.

[30]  Can astrophysical gamma-ray sources mimic dark matter annihilation in galactic satellites? , 2006, astro-ph/0610731.

[31]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[32]  T. Taira,et al.  Emulsion chamber observations of primary cosmic-ray electrons in the energy range 30-1000 GeV , 1980 .

[33]  Slawomir Piatek,et al.  The effect of galactic tides on the apparent mass-to-light ratios in dwarf spheroidal galaxies , 1995 .

[34]  Abraham Loeb,et al.  The Photoevaporation of Dwarf Galaxies during Reionization , 1999, astro-ph/9901114.

[35]  P. Salati,et al.  Detection of neutralino annihilation photons from external galaxies , 1999, astro-ph/9909112.

[36]  Kyle B. Westfall,et al.  EXPLORING HALO SUBSTRUCTURE WITH GIANT STARS. VIII. THE EXTENDED STRUCTURE OF THE SCULPTOR DWARF SPHEROIDAL GALAXY , 2006 .

[37]  B. Yanny,et al.  Cats and dogs, hair and a hero: A quintet of new milky way companions , 2006 .

[38]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[39]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[40]  J. A. Hinton,et al.  The STACEE-32 ground based gamma-ray detector , 2002 .

[41]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[42]  P. Frinchaboy,et al.  Exploring Halo Substructure with Giant Stars: The Velocity Dispersion Profiles of the Ursa Minor and Draco Dwarf Spheroidal Galaxies at Large Angular Separations , 2005, astro-ph/0504035.

[43]  U. California,et al.  Semi-analytic modelling of galaxy formation: The local Universe , 1998, astro-ph/9802268.

[44]  de Jong,et al.  Island Universes: Structure and Evolution of Disk Galaxies , 2006 .

[45]  Andreas Koch,et al.  The Observed Properties of Dark Matter on Small Spatial Scales , 2007 .

[46]  Juan Cortina Status and First Results of the Magic Telescope , 2004 .

[47]  A. D. Mackey,et al.  Stellar kinematics and metallicities in the Leo I dwarf spheroidal galaxy -- wide field implications for galactic evolution , 2007 .

[48]  Surface brightness of dark matter: Unique signatures of neutralino annihilation in the galactic halo , 2000, astro-ph/0010056.

[49]  Simon P. Swordy,et al.  VERITAS: the Very Energetic Radiation Imaging Telescope Array System , 1999 .

[50]  Jr.,et al.  A New Milky Way Dwarf Galaxy in Ursa Major , 2005, astro-ph/0503552.

[51]  E. Olszewski,et al.  The Mass-to-Light Ratios of the Draco and Ursa Minor Dwarf Spheroidal Galaxies. II. The Binary Population and its Effects on the Measured Velocity Dispersions of Dwarf Spheroidals , 1996 .

[52]  W. Chiu,et al.  The Expected Mass Function for Low-Mass Galaxies in a Cold Dark Matter Cosmology: Is There a Problem? , 2001, astro-ph/0103359.

[53]  Carlos S. Frenk,et al.  A recipe for galaxy formation , 1994 .

[54]  Subaru Telescope,et al.  A Curious Milky Way Satellite in Ursa Major , 2006, astro-ph/0606633.

[55]  Savvas M. Koushiappas,et al.  Precise constraints on the dark matter content of Milky Way dwarf galaxies for gamma-ray experiments , 2007 .

[56]  Felix Stoehr,et al.  Dark matter annihilation in the halo of the Milky Way , 2003, astro-ph/0307026.

[57]  S. Digel,et al.  EGRET Observations of the Diffuse Gamma-Ray Emission from the Galactic Plane , 1997 .

[58]  THE ASTROPHYSICAL JOURNAL, IN PRESS Preprint typeset using LATEX style emulateapj v. 6/22/04 CONSTRAINING GLOBAL PROPERTIES OF THE DRACO DWARF SPHEROIDAL GALAXY , 2005 .

[59]  Alan W. McConnachie,et al.  The Tidal Evolution of Local Group Dwarf Spheroidals , 2007, 0708.3087.

[60]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[61]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .