Energy Taxis Is the Dominant Behavior in Azospirillum brasilense

ABSTRACT Energy taxis encompasses aerotaxis, phototaxis, redox taxis, taxis to alternative electron acceptors, and chemotaxis to oxidizable substrates. The signal for this type of behavior is originated within the electron transport system. Energy taxis was demonstrated, as a part of an overall behavior, in several microbial species, but it did not appear as the dominant determinant in any of them. In this study, we show that most behavioral responses proceed through this mechanism in the alpha-proteobacterium Azospirillum brasilense. First, chemotaxis to most chemoeffectors typical of the azospirilla habitat was found to be metabolism dependent and required a functional electron transport system. Second, other energy-related responses, such as aerotaxis, redox taxis, and taxis to alternative electron acceptors, were found in A. brasilense. Finally, a mutant lacking a cytochromec oxidase of the cbb3 type was affected in chemotaxis, redox taxis, and aerotaxis. Altogether, the results indicate that behavioral responses to most stimuli inA. brasilense are triggered by changes in the electron transport system.

[1]  C. Neyra,et al.  Relationships between Carbon Dioxide, Malate, and Nitrate Accumulation and Reduction in Corn (Zea mays L.) Seedlings. , 1976, Plant physiology.

[2]  J. Armitage,et al.  Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti--variations on a theme? , 1997, Microbiology.

[3]  Y. Okon Azospirillum/Plant Associations , 1993 .

[4]  D. Koshland,et al.  Electron acceptor taxis and blue light effect on bacterial chemotaxis , 1979, Journal of bacteriology.

[5]  J. Döbereiner,et al.  A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. , 1978, Canadian journal of microbiology.

[6]  M. Alam,et al.  Myoglobin-like aerotaxis transducers in Archaea and Bacteria , 2000, Nature.

[7]  B L Taylor,et al.  Role of proton motive force in sensory transduction in bacteria. , 1983, Annual review of microbiology.

[8]  I. Zhulin,et al.  In search of higher energy: metabolism‐dependent behaviour in bacteria , 1998, Molecular microbiology.

[9]  D. Koshland,et al.  Membrane fluidity and chemotaxis: effects of temperature and membrane lipid composition on the swimming behavior of Salmonella typhimurium and Escherichia coli. , 1977, Journal of molecular biology.

[10]  E. Greenberg,et al.  Chemotaxis of Spirochaeta aurantia: involvement of membrane potential in chemosensory signal transduction , 1981, Journal of bacteriology.

[11]  J. Armitage,et al.  Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense , 1993, Journal of bacteriology.

[12]  I. Zhulin,et al.  Aerotaxis and other energy-sensing behavior in bacteria. , 1999, Annual review of microbiology.

[13]  J P Armitage,et al.  Metabolism is required for chemotaxis to sugars in Rhodobacter sphaeroides. , 1998, Microbiology.

[14]  J. Adler,et al.  Negative Chemotaxis in Escherichia coli , 1974, Journal of bacteriology.

[15]  A N Glagolev,et al.  Reception of the energy level in bacterial taxis. , 1980, Journal of theoretical biology.

[16]  M. Lambrecht,et al.  Characterization of a sugar‐binding protein from Azospirillum brasilense mediating chemotaxis to and uptake of sugars , 1999, Molecular microbiology.

[17]  A. Lane,et al.  Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography-mass spectrometry. , 1997, Analytical biochemistry.

[18]  J. Armitage,et al.  The role of taxis in the ecology of Azospirillum , 1992 .

[19]  Y. Okon,et al.  Purification and characterization of D(—)-β-hydroxybutyrate dehydrogenase from Azospirillum brasilense Cd , 1990 .

[20]  J. Armitage,et al.  Electron transport-dependent taxis in Rhodobacter sphaeroides , 1995, Journal of bacteriology.

[21]  Y. Okon,et al.  The regulation of poly-β-hydroxybutyrate metabolism in Azospirillum brasilense during balanced growth and starvation , 1990 .

[22]  I. Zhulin,et al.  Behavioral responses of Escherichia coli to changes in redox potential. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  R. Schmitt,et al.  Motility and Chemotaxis in Two Strains of Rhizobium with Complex Flagella , 1982 .

[24]  M. Kloss,et al.  Organic acids in the root exudates of diplachne fusca (linn.) beauv. , 1984 .

[25]  Y. Okon,et al.  Aerotactic response of Azospirillum brasilense , 1982, Journal of bacteriology.

[26]  D. Koshland,et al.  Quantitation of the sensory response in bacterial chemotaxis. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[27]  I. Zhulin,et al.  Oxygen taxis and proton motive force in Azospirillum brasilense , 1996, Journal of bacteriology.

[28]  Y. Okon,et al.  Detection of chemotaxis in Azospirillum brasilense , 1983 .

[29]  Judith P. Armitage,et al.  Behavioural responses of bacteria to light and oxygen , 1997, Archives of Microbiology.

[30]  J. Armitage,et al.  Identification of a methyl‐accepting chemotaxis protein in Rhodobacter sphaeroides , 1995, Molecular microbiology.

[31]  J. Vanderleyden,et al.  A Cytochrome cbb3(Cytochrome c) Terminal Oxidase in Azospirillum brasilense Sp7 Supports Microaerobic Growth , 1998, Journal of bacteriology.

[32]  B. Trumpower Cytochrome bc1 complexes of microorganisms. , 1990, Microbiological reviews.

[33]  D. Koshland,et al.  Sensory electrophysiology of bacteria: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R. Bally,et al.  Loss of Cytochrome c Oxidase Activity and Acquisition of Resistance to Quinone Analogs in a Laccase-Positive Variant of Azospirillum lipoferum , 1999, Journal of bacteriology.

[35]  J. Adler,et al.  Chemoreceptors in bacteria. , 1969, Science.

[36]  I. Zhulin,et al.  Glycerol elicits energy taxis of Escherichia coli and Salmonella typhimurium , 1997, Journal of bacteriology.

[37]  I. Zhulin,et al.  Behaviour of Azospirillum brasilense in a spatial gradient of oxygen and in a ‘redox’ gradient of an artificial electron acceptor , 1991 .

[38]  I. Zhulin,et al.  The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. Martínez-Drets,et al.  Catabolism of carbohydrates and organic acids and expression of nitrogenase by azospirilla , 1984, Journal of bacteriology.

[40]  A. Hartmann,et al.  Influence of amino acids on nitrogen fixation ability and growth of Azospirillum spp , 1988, Applied and environmental microbiology.

[41]  C. Harwood,et al.  An aerotaxis transducer gene from Pseudomonas putida. , 2000, FEMS microbiology letters.

[42]  N. Krieg,et al.  Fructose Catabolism in Azospirillum brasilense and Azospirillum lipoferum , 1984, Journal of Bacteriology.

[43]  T. Hurek,et al.  Strain-specific chemotaxis of Azospirillum spp , 1985, Journal of bacteriology.

[44]  F. Neidhart Escherichia coli and Salmonella. , 1996 .

[45]  J. Döbereiner,et al.  Denitrification by N2-fixing Sprillum lipoferum. , 1977, Canadian journal of microbiology.

[46]  C. R. Lovell,et al.  Chemotaxis of Azospirillum Species to Aromatic Compounds , 1993, Applied and environmental microbiology.

[47]  E. Greenberg,et al.  A voltage clamp inhibits chemotaxis of Spirochaeta aurantia , 1983, Journal of bacteriology.

[48]  P. Wardman,et al.  Reduction Potentials of One-Electron Couples Involving Free Radicals in Aqueous Solution , 1989 .

[49]  J. S. Parkinson,et al.  Copyright © 1997, American Society for Microbiology A Signal Transducer for Aerotaxis in Escherichia coli , 1997 .