Numerical solution of sparse singular systems of equations arising from ergodic markov chains

The stationary probability distribution vector, x, associated with an ergodic finite Markov chain satisfies a homogeneous singular system of equations , where A is a real and generally unsymmetric square matrix of the form . Here I is the identity matrix and T is the chain's column stochastic matrix. In many applications A is very large and sparse, and in such cases it is desirable to exploit this property in computing x. In this paper we review some of the literature dealing with sparse techniques for solving the above system of equations, and in so doing attempt to present a variety of methods from a unified point of view

[1]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[2]  E. Stiefel,et al.  Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme , 1955 .

[3]  F. L. Bauer Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme , 1957 .

[4]  Herbert A. Simon,et al.  Aggregation of Variables in Dynamic Systems , 1961 .

[5]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[6]  R. P. Kendall,et al.  An Approximate Factorization Procedure for Solving Self-Adjoint Elliptic Difference Equations , 1968 .

[7]  H. L. Stone ITERATIVE SOLUTION OF IMPLICIT APPROXIMATIONS OF MULTIDIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS , 1968 .

[8]  H. Rutishauser Computational aspects of F. L. Bauer's simultaneous iteration method , 1969 .

[9]  Maurice Clint,et al.  A Simultaneous Iteration Method for the Unsymmetric Eigenvalue Problem , 1971 .

[10]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[11]  C. Paige,et al.  Computation of the stationary distribution of a markov chain , 1975 .

[12]  A. Jennings,et al.  Simultaneous Iteration for Partial Eigensolution of Real Matrices , 1975 .

[13]  G. Stewart Simultaneous iteration for computing invariant subspaces of non-Hermitian matrices , 1976 .

[14]  P. K. W. Vinsome,et al.  Orthomin, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations , 1976 .

[15]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[16]  T. Manteuffel The Tchebychev iteration for nonsymmetric linear systems , 1977 .

[17]  I-wen Kuo,et al.  A note on factorizations of singular M-matrices , 1977 .

[18]  P. J. Courtois Decomposability of Queueing Networks , 1977 .

[19]  T. Manteuffel Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration , 1978 .

[20]  I. Gustafsson A class of first order factorization methods , 1978 .

[21]  William J. Stewart,et al.  A comparison of numerical techniques in Markov modeling , 1978, CACM.

[22]  O. Axelsson Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations , 1980 .

[23]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[24]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[25]  Kang C. Jea,et al.  Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .

[26]  William J. Stewart,et al.  A Simultaneous Iteration Algorithm for Real Matrices , 1981, TOMS.

[27]  R. E. Funderlic,et al.  Solution of Homogeneous Systems of Linear Equations Arising from Compartmental Models , 1981 .

[28]  Y. Saad Krylov subspace methods for solving large unsymmetric linear systems , 1981 .

[29]  S. Eisenstat Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods , 1981 .

[30]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[31]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[32]  O. Østerby,et al.  Direct Methods for Sparse Matrices , 1983 .

[33]  G. W. Stewart,et al.  Computable Error Bounds for Aggregated Markov Chains , 1983, JACM.

[34]  L. Kaufman Matrix Methods for Queuing Problems , 1983 .

[35]  Gene H. Golub,et al.  Matrix computations , 1983 .

[36]  Ole Østerby,et al.  Direct Methods for Space Matrices , 1983, Lecture Notes in Computer Science.

[37]  R. Plemmons,et al.  A Combined Direct-Iterative Method for Certain M-Matrix Linear Systems, , 1984 .

[38]  W. Stewart,et al.  ITERATIVE METHODS FOR COMPUTING STATIONARY DISTRIBUTIONS OF NEARLY COMPLETELY DECOMPOSABLE MARKOV CHAINS , 1984 .

[39]  Y. Saad,et al.  Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems , 1984 .

[40]  G. Stewart,et al.  On a Rayleigh-Ritz refinement technique for nearly uncoupled stochastic matrices , 1984 .

[41]  Pierre Semal,et al.  Bounds for the Positive Eigenvectors of Nonnegative Matrices and for their Approximations by Decomposition , 1984, JACM.

[42]  Donald J. Rose,et al.  Convergent Regular Splittings for Singular M-Matrices , 1984 .

[43]  Stanley C. Eisenstat,et al.  The (New) Yale Sparse Matrix Package , 1984 .

[44]  R. Plemmons,et al.  Comparison of Some Direct Methods for Computing Stationary Distributions of Markov Chains , 1984 .

[45]  H. Schneider Theorems on M-splittings of a singular M-matrix which depend on graph structure☆ , 1984 .

[46]  Winfried K. Grassmann,et al.  Regenerative Analysis and Steady State Distributions for Markov Chains , 1985, Oper. Res..

[47]  William J. Stewart,et al.  Iterative aggregation/disaggregation techniques for nearly uncoupled markov chains , 1985, JACM.

[48]  O. Axelsson Incomplete block matrix factorization preconditioning methods. The ultimate answer , 1985 .

[49]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[50]  Owe Axelsson,et al.  A survey of preconditioned iterative methods for linear systems of algebraic equations , 1985 .

[51]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[52]  Y. Saad,et al.  Conjugate gradient-like algorithms for solving nonsymmetric linear systems , 1985 .

[53]  Hendrik Vantilborgh,et al.  Aggregation with an error of O(ε2) , 1985, JACM.

[54]  C. D. Meyer,et al.  Using the QR factorization and group inversion to compute, differentiate ,and estimate the sensitivity of stationary probabilities for markov chains , 1986 .

[55]  G. P. Barker,et al.  Convergent iterations for computing stationary distributions of markov , 1986 .

[56]  John J. Buoni Incomplete factorization of singular M-matrices , 1986 .

[57]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[58]  R. Plemmons,et al.  Updating LU factorizations for computing stationary distributions , 1986 .

[59]  A. George,et al.  Orthogonal Reduction of Sparse Matrices to Upper Triangular Form Using Householder Transformations , 1986 .

[60]  P. Courtois,et al.  Block iterative algorithms for stochastic matrices , 1986 .

[61]  O. Axelsson A general incomplete block-matrix factorization method , 1986 .

[62]  O. Axelsson,et al.  On the eigenvalue distribution of a class of preconditioning methods , 1986 .

[63]  Jesse L. Barlow,et al.  On the smallest positive singular value of a singular M -matrix with applications to ergodic Markov chains , 1986 .

[64]  Daniel P. Heyman,et al.  Further comparisons of direct methods for computing stationary distributions of Markov chains , 1987 .

[65]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[66]  J. Dennis,et al.  Generalized conjugate directions , 1987 .

[67]  A. George,et al.  A data structure for sparse QR and LU factorizations , 1988 .

[68]  D. Mitra,et al.  Relaxations for the numerical solutions of some stochastic problems , 1988 .