TWO-STAGE FRAGMENTATION FOR CLUSTER FORMATION: ANALYTICAL MODEL AND OBSERVATIONAL CONSIDERATIONS
暂无分享,去创建一个
[1] J. Alves,et al. BARNARD 59: NO EVIDENCE FOR FURTHER FRAGMENTATION , 2012, 1201.2129.
[2] N. Peretto,et al. Herschel Observations of a Potential Core-Forming Clump: Perseus B1-E , 2011, 1111.7021.
[3] Di Li,et al. THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION , 2011, 1108.0410.
[4] S. Morton,et al. Hydromagnetic waves in weakly-ionized media – I. Basic theory, and application to interstellar molecular clouds , 2011, 1103.6037.
[5] M. Lombardi,et al. DEEP NEAR-INFRARED SURVEY OF THE PIPE NEBULA. II. DATA, METHODS, AND DUST EXTINCTION MAPS , 2010, 1011.1490.
[6] A. Goodman,et al. STAR FORMATION IN THE TAURUS FILAMENT L 1495: FROM DENSE CORES TO STARS , 2010, 1010.2755.
[7] Astrophysics,et al. YOUNG STARLESS CORES EMBEDDED IN THE MAGNETICALLY DOMINATED PIPE NEBULA. II. EXTENDED DATA SET , 2010, 1207.3310.
[8] Di Li,et al. THE RELATION BETWEEN GAS AND DUST IN THE TAURUS MOLECULAR CLOUD , 2010, 1007.5060.
[9] J. Alves,et al. HIGH RESOLUTION NEAR-INFRARED SURVEY OF THE PIPE NEBULA. I. A DEEP INFRARED EXTINCTION MAP OF BARNARD 59 , 2009, 0908.3588.
[10] T. Mouschovias,et al. The initial core mass function due to ambipolar diffusion in molecular clouds , 2009, 0908.0102.
[11] Wolf B. Dapp,et al. Magnetically-Regulated Fragmentation Induced by Nonlinear Flows and Ambipolar Diffusion , 2008, 0810.0783.
[12] S. Basu,et al. Nonlinear evolution of gravitational fragmentation regulated by magnetic fields and ambipolar diffusion , 2008, 0806.2482.
[13] F. O. Alves,et al. Optical polarimetry toward the Pipe nebula: revealing the importance of the magnetic field , 2008, 0806.1189.
[14] Gopal Narayanan,et al. Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Linear Dynamic Range Spectral Line Mapping , 2008, 0802.2206.
[15] Zhi-Yun Li,et al. The Formation of Distributed and Clustered Stars in Molecular Clouds , 2008, 0801.0492.
[16] Laurent Loinard,et al. VLBA Determination of the Distance to Nearby Star-forming Regions. II. Hubble 4 and HDE 283572 in Taurus , 2007, 0708.4403.
[17] E. Ostriker,et al. Theory of Star Formation , 2007, 0707.3514.
[18] D. Johnstone,et al. Current Star Formation in the Perseus Molecular Cloud: Constraints from Unbiased Submillimeter and Mid-Infrared Surveys , 2006, astro-ph/0610381.
[19] S. Basu,et al. Formation and Collapse of Nonaxisymmetric Protostellar Cores in Planar Magnetic Interstellar Clouds: Formulation of the Problem and Linear Analysis , 2006, astro-ph/0607622.
[20] D. Johnstone,et al. The Large- and Small-Scale Structures of Dust in the Star-forming Perseus Molecular Cloud , 2006, astro-ph/0602089.
[21] A. Tielens. The Physics and Chemistry of the Interstellar Medium , 2005 .
[22] C. Heiles,et al. The Millennium Arecibo 21 Centimeter Absorption-Line Survey. IV. Statistics of Magnetic Field, Column Density, and Turbulence , 2005, astro-ph/0501482.
[23] R. Beck,et al. Cosmic magnetic fields , 2005 .
[24] D. Johnstone,et al. An Extinction Threshold for Protostellar Cores in Ophiuchus , 2004, astro-ph/0406640.
[25] S. Basu,et al. Nonlinear Hydromagnetic Wave Support of a Stratified Molecular Cloud , 2003, astro-ph/0601072.
[26] C. F. Gammie,et al. Analysis of Clumps in Molecular Cloud Models: Mass Spectrum, Shapes, Alignment, and Rotation , 2003, astro-ph/0306148.
[27] L. Hartmann. Flows, Fragmentation, and Star Formation. I. Low-Mass Stars in Taurus , 2002, astro-ph/0207216.
[28] Ralf Klessen,et al. (ACCEPTED FOR PUBLICATION IN APJ) Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE FORMATION OF STELLAR CLUSTERS: MASS SPECTRA FROM TURBULENT MOLECULAR CLOUD , 2001 .
[29] A. Lazarian,et al. Turbulent Cooling Flows in Molecular Clouds , 1998, astro-ph/9811044.
[30] A. Kawamura,et al. A C18O Survey of Dense Cloud Cores in Taurus: Star Formation , 1998 .
[31] P. Caselli,et al. The Ionization Fraction in Dense Cloud Cores , 1998 .
[32] B. Jones,et al. The universality of the stellar initial mass function , 1997 .
[33] T. Mouschovias,et al. Ambipolar diffusion, interstellar dust, and the formation of cloud cores and protostars. IV. Effect of ultraviolet ionization and magnetically controlled infall rate , 1995 .
[34] Jonathan P. Williams,et al. The Density Structure in the Rosette Molecular Cloud: Signposts of Evolution , 1995 .
[35] T. Mouschovias,et al. Ambipolar Diffusion, Interstellar Dust, and the Formation of Cloud Cores and Protostars. III. Typical Axisymmetric Solutions , 1994 .
[36] Alyssa A. Goodman,et al. OH Zeeman observations of dark clouds , 1993 .
[37] T. Miller. Dust in the galactic environment , 1993 .
[38] Alyssa A. Goodman,et al. Optical polarization maps of star-forming regions in Perseus, Taurus, and Ophiuchus , 1990 .
[39] C. McKee. Photoionization-regulated Star Formation and the Structure of Molecular Clouds , 1989 .
[40] Alyssa A. Goodman,et al. Measurement of Magnetic Field Strength in the Dark Cloud Barnard 1 , 1989 .
[41] B. Elmegreen. Magnetic diffusion and ionization fractions in dense molecular clouds - The role of charged grains , 1979 .
[42] B. Elmegreen,et al. A catalog of dark globular filaments. , 1979 .
[43] W. Langer. The stability of interstellar clouds containing magnetic fields. , 1978 .
[44] B. Savage,et al. A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .