COSMIC REIONIZATION AFTER PLANCK: COULD QUASARS DO IT ALL?

We assess a model of late cosmic reionization in which the ionizing background radiation arises entirely from high redshift quasars and other active galactic nuclei (AGNs). The low optical depth to Thomson scattering reported by the Planck Collaboration pushes the redshift of instantaneous reionization down to z=8.8^{+1.7}_{-1.4} and greatly reduces the need for significant Lyman-continuum emission at very early times. We show that, if recent claims of a numerous population of faint AGNs at z=4-6 are upheld, and the high inferred AGN comoving emissivity at these epochs persists to higher, z~10, redshifts, then active galaxies may drive the reionization of hydrogen and helium with little contribution from normal star-forming galaxies. We discuss an AGN-dominated scenario that satisfies a number of observational constraints: the HI photoionization rate is relatively flat over the range 2 5 AGNs provide a significant fraction of the unresolved X-ray background at 2 keV. Singly- and doubly-ionized helium contribute about 13% to tau, and the HeIII volume fraction is already 50% when hydrogen becomes fully reionized.

[1]  S. Furlanetto,et al.  Photoheating and the fate of hard photons during the reionization of He ii by quasars , 2008, 0807.2447.

[2]  A. F. Davidsen,et al.  The Rest-Frame Extreme-Ultraviolet Spectral Properties of Quasi-stellar Objects , 2001, astro-ph/0109531.

[3]  M. Franx,et al.  LOWER-LUMINOSITY GALAXIES COULD REIONIZE THE UNIVERSE: VERY STEEP FAINT-END SLOPES TO THE UV LUMINOSITY FUNCTIONS AT z ⩾ 5–8 FROM THE HUDF09 WFC3/IR OBSERVATIONS , 2011, 1105.2038.

[4]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[5]  A. Moretti,et al.  Spectrum of the unresolved cosmic X-ray background: what is unresolved 50 years after its discovery , 2012, 1210.6377.

[6]  S. Djorgovski,et al.  THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z ∼ 4: IMPLICATIONS FOR IONIZATION OF THE INTERGALACTIC MEDIUM AND COSMIC DOWNSIZING , 2009, 0912.2799.

[7]  G. Zamorani,et al.  The incidence of obscuration in active galactic nuclei , 2013, 1311.1305.

[8]  E. Puchwein,et al.  Lyman α emitters gone missing: evidence for late reionization? , 2014, 1412.4790.

[9]  A. Meiksin Constraints on the ionization sources of the high‐redshift intergalactic medium , 2004, astro-ph/0409256.

[10]  George D. Becker,et al.  The Giant Gemini GMOS survey of zem > 4.4 quasars – I. Measuring the mean free path across cosmic time , 2014, 1402.4154.

[11]  R. Davé,et al.  Gas clumping in self-consistent reionization models , 2012, 1209.2489.

[12]  Ruben Salvaterra,et al.  High-redshift active galactic nuclei and H I reionisation: limits from the unresolved X-ray background , 2015, 1502.03089.

[13]  R. Ellis,et al.  Early star-forming galaxies and the reionization of the Universe , 2010, Nature.

[14]  P. Shapiro,et al.  COSMOLOGICAL H II REGIONS AND THE PHOTOIONIZATION OF THE INTERGALACTIC MEDIUM. , 1986 .

[15]  P. Hopkins,et al.  He ii REIONIZATION AND ITS EFFECT ON THE INTERGALACTIC MEDIUM , 2008, 0807.2799.

[16]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[17]  M. Zaldarriaga,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF HEII REIONIZATION , 2022 .

[18]  A Limit from the X-Ray Background on the Contribution of Quasars to Reionization , 2004, astro-ph/0403078.

[19]  M. Salvato,et al.  EVOLUTION OF THE QUASAR LUMINOSITY FUNCTION OVER 3 < z < 5 IN THE COSMOS SURVEY FIELD , 2012, 1207.2154.

[20]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[21]  Brian Siana,et al.  A HIGH-RESOLUTION HUBBLE SPACE TELESCOPE STUDY OF APPARENT LYMAN CONTINUUM LEAKERS AT z ∼ 3 , 2015, 1506.08201.

[22]  J. Dunlop,et al.  CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION , 2012, 1206.0735.

[23]  P. Madau,et al.  Evidence of patchy hydrogen reionization from an extreme Lyα trough below redshift six , 2014, 1407.4850.

[24]  Adam D. Myers,et al.  The 2dF-SDSS LRG and QSO Survey: the QSO luminosity function at 0.4 < z < 2.6 , 2009, 0907.2727.

[25]  George D. Becker,et al.  The photoheating of the intergalactic medium in synthesis models of the UV background , 2014, 1410.1531.

[26]  L. Pentericci,et al.  Faint AGNs at z > 4 in the CANDELS GOODS-S field: looking for contributors to the reionization of the Universe , 2015, 1502.02562.

[27]  Caltech,et al.  Detection of extended He II reionization in the temperature evolution of the intergalactic medium , 2010, 1008.2622.

[28]  J. Prochaska,et al.  EARLY AND EXTENDED HELIUM REIONIZATION OVER MORE THAN 600 MILLION YEARS OF COSMIC TIME , 2014, 1405.7405.

[29]  J. Bolton,et al.  New Measurements of the Ionizing Ultraviolet Background over 2 < z < 5 and Implications for Hydrogen Reionization , 2013, 1307.2259.

[30]  R. Srianand,et al.  Photon underproduction crisis: Are QSOs sufficient to resolve it? , 2015, 1503.07168.

[31]  Piero Madau,et al.  RADIATIVE TRANSFER IN A CLUMPY UNIVERSE. IV. NEW SYNTHESIS MODELS OF THE COSMIC UV/X-RAY BACKGROUND , 2011, 1105.2039.

[32]  J. Prochaska,et al.  The first ultraviolet quasar-stacked spectrum at z ≃ 2.4 from WFC3 , 2015, 1503.02075.

[33]  A. Myers,et al.  Luminosity function from dedicated SDSS-III and MMT data of quasars in 0.7 < z < 4.0 selected with a new approach , 2012, 1209.3968.

[34]  A. Fontana,et al.  Faint high-redshift AGN in the Chandra deep field south: the evolution of the AGN luminosity function and black hole demography , 2011, 1109.2888.

[35]  Molly S. Peeples,et al.  THE PHOTON UNDERPRODUCTION CRISIS , 2014, 1404.2933.

[36]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[37]  Naveen A. Reddy,et al.  NARROWBAND LYMAN-CONTINUUM IMAGING OF GALAXIES AT z ∼ 2.85 , 2013, 1306.1535.

[38]  L. Wisotzki,et al.  Low redshift AGN in the Hamburg/ESO survey - I. The local AGN luminosity function , 2009, 0909.5112.

[39]  Henry C. Ferguson,et al.  A DEEP HUBBLE SPACE TELESCOPE AND KECK SEARCH FOR DEFINITIVE IDENTIFICATION OF LYMAN CONTINUUM EMITTERS AT cic>∼3.1 , 2015, 1502.06978.

[40]  J. Michael Shull,et al.  HST-COS OBSERVATIONS OF AGNs. II. EXTENDED SURVEY OF ULTRAVIOLET COMPOSITE SPECTRA FROM 159 ACTIVE GALACTIC NUCLEI , 2014, 1408.5900.

[41]  Britton D. Smith,et al.  THE BARYON CENSUS IN A MULTIPHASE INTERGALACTIC MEDIUM: 30% OF THE BARYONS MAY STILL BE MISSING , 2011, 1112.2706.

[42]  A. Fontana,et al.  ON THE DETECTION OF IONIZING RADIATION ARISING FROM STAR-FORMING GALAXIES AT REDSHIFT z ∼ 3–4: LOOKING FOR ANALOGS OF “STELLAR RE-IONIZERS” , 2012, 1201.5642.

[43]  A. Mazure,et al.  The VVDS type-1 AGN sample: the faint end of the luminosity function , 2007, 0704.1660.

[44]  C. Porciani,et al.  The imprint of inhomogeneous He ii reionization on the H i and He ii Lyα forest , 2013, 1306.5745.

[45]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[46]  N. Konidaris,et al.  LINE-EMITTING GALAXIES BEYOND A REDSHIFT OF 7: AN IMPROVED METHOD FOR ESTIMATING THE EVOLVING NEUTRALITY OF THE INTERGALACTIC MEDIUM , 2014, 1404.4632.

[47]  Britton D. Smith,et al.  HST/COS OBSERVATIONS OF THE QUASAR HE 2347 − 4342: PROBING THE EPOCH OF He ii PATCHY REIONIZATION AT REDSHIFTS z = 2.4–2.9 , 2010, 1008.2957.

[48]  M. Salvato,et al.  The X-ray to optical-UV luminosity ratio of X-ray selected type 1 AGN in XMM-COSMOS , 2009, 0912.4166.

[49]  M. Kuhlen,et al.  Concordance models of reionization: implications for faint galaxies and escape fraction evolution , 2012, 1201.0757.

[50]  I. McGreer,et al.  Model-independent evidence in favour of an end to reionization by z ≈ 6 , 2014, 1411.5375.