Spectroscopic Needs for Imaging Dark Energy Experiments
暂无分享,去创建一个
N. Gehrels | C. Papovich | I. Dell'Antonio | Z. Ivezic | M. Moniez | K. Honscheid | O. Lahav | H. Hildebrandt | A. von der Linden | R. Miquel | M. Brodwin | J. Coupon | R. Mandelbaum | E. Gawiser | S. Allam | J. Peacock | A. Slozar | E. Cheu | J. Rhodes | Ž. Ivezić | O. Lahav | P. Hall | R. Brunner | J. Rhodes | J. Kneib | F. Abdalla | J. Peacock | S. Bailey | T. Beers | M. Blanton | J. Brownstein | J. Comparat | S. Ho | K. Honscheid | B. M'enard | J. Newman | W. Wood-Vasey | N. Gehrels | R. Mandelbaum | J. Moustakas | S. Allam | R. Wechsler | C. Cunha | J. Marshall | R. Miquel | S. Schmidt | M. Carrasco-Kind | I. Sadeh | E. Gawiser | T. Tyson | C. Papovich | H. Hildebrandt | D. Stern | J. Coupon | M. Brodwin | A. D. L. Macorra | E. Cheu | J. Cervantes-Cota | D. Huterer | C. Hirata | B. Frye | S. Allen | A. D. Linden | A. Hagen | W. Moos | K. Grady | J. Kruk | M. Colless | J. Ricol | R. Ansari | W. Barkhouse | D. Matthews | A. Zentner | E. Chisari | I. Dell’Antonio | M. Moniez | D. Stern | J. Moustakas | R. Wechsler | J. Newman | R. Brunner | C. Cunha | D. Huterer | C. Hirata | K. Grady | J. Kruk | W. Barkhouse | J.-P. Kneib | S. Ho | R. Ansari | S. Allen | S. Bailey | I. Sadeh | A. Abate | A. Hearin | C. Park | A. Slozar | M. Colless | F. Abdalla | A. Hagen | M. Blanton | A. de la Macorra | M. Carrasco-Kind | B. Frye | W. Moos | J. Marshall | P. Hall | J. Brownstein | T. Beers | J. Comparat | B. M'enard | A. Abate | J. Cervantes-Cota | E. Chisari | A. Hearin | D. Matthews | C. Park | J-S. Ricol | S. Schmidt | T. Tyson | W. Wood-Vasey | A. Zentner
[1] The Dark Energy Survey Science Program , 2007 .
[2] Using Galaxy Two-Point Correlation Functions to Determine the Redshift Distributions of Galaxies Binned by Photometric Redshift , 2006, astro-ph/0606098.
[3] 이화영. X , 1960, Chinese Plants Names Index 2000-2009.
[4] Manda Banerji,et al. A comparison of six photometric redshift methods applied to 1.5 million luminous red galaxies , 2008, 0812.3831.
[5] Donald W. Sweeney,et al. LSST Science Book, Version 2.0 , 2009, 0912.0201.
[6] T. Kitching,et al. Systematic effects on dark energy from 3D weak shear , 2008, 0801.3270.
[7] Ofer Lahav,et al. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .
[8] C. V. Breukelen,et al. A reliable cluster detection technique using photometric redshifts: introducing the 2TecX algorithm , 2009, 0902.4388.
[9] 장윤희,et al. Y. , 2003, Industrial and Labor Relations Terms.
[10] D. Madgwick,et al. The DEEP2 Galaxy Redshift Survey: the relationship between galaxy properties and environment at z∼ 1 , 2006, astro-ph/0603177.
[11] Huan Lin,et al. Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements , 2012, 1207.3347.
[12] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[13] M. Blanton,et al. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SURVEY OVERVIEW AND CHARACTERISTICS , 2010, 1011.4307.
[14] C. Baltay,et al. WFIRST-2.4: What Every Astronomer Should Know , 2013, 1305.5425.
[15] Huan Lin,et al. Estimating the redshift distribution of photometric galaxy samples , 2008 .
[16] G. Bernstein,et al. Catastrophic photometric redshift errors: weak-lensing survey requirements , 2009, 0902.2782.
[17] Norbert Magnussen. Astroparticle Physics , 1999 .
[18] Tamas Budavari,et al. A UNIFIED FRAMEWORK FOR PHOTOMETRIC REDSHIFTS , 2008, 0811.2600.
[19] A. Ealet,et al. Designing future dark energy space missions. I. Building realistic galaxy spectro-photometric catalo , 2009, 0902.0625.
[20] W. M. Wood-Vasey,et al. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.
[21] Adam G. Riess,et al. Observational probes of cosmic acceleration , 2012, 1201.2434.
[22] A. Mazure,et al. The Vimos VLT deep survey Global properties of 20 000 galaxies in the IAB < 22.5 WIDE survey , 2008, 0804.4568.
[23] Suman Bhattacharya,et al. UTILIZING TYPE Ia SUPERNOVAE IN A LARGE, FAST, IMAGING SURVEY TO CONSTRAIN DARK ENERGY , 2008, 0812.0358.
[24] Wayne Hu,et al. Effects of Photometric Redshift Uncertainties on Weak-Lensing Tomography , 2005 .
[25] Redshift-independent distances to type Ia supernovae , 2004, astro-ph/0408097.
[26] Andrew P. Hearin,et al. Testing the Origin of the CMB Large-Angle Correlation Deficit with a Galaxy Imaging Survey , 2011, 1108.2269.
[27] B. Garilli,et al. THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .
[28] Danica Marsden,et al. Giga-z: A 100,000 OBJECT SUPERCONDUCTING SPECTROPHOTOMETER FOR LSST FOLLOW-UP , 2013, 1307.5066.
[29] Edward J. Wollack,et al. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.
[30] A. Fontana,et al. A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION , 2013, 1308.5353.
[31] S. Bardelli,et al. Photo-z performance for precision cosmology – II. Empirical verification* , 2012, 1201.0995.
[32] B. Garilli,et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.
[33] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[34] S. J. Lilly,et al. Precision photometric redshift calibration for galaxy–galaxy weak lensing , 2007, 0709.1692.
[35] Simon J. Lilly,et al. Photo‐z performance for precision cosmology , 2009, 0910.5735.
[36] Andrew P. Hearin,et al. A GENERAL STUDY OF THE INFLUENCE OF CATASTROPHIC PHOTOMETRIC REDSHIFT ERRORS ON COSMOLOGY WITH COSMIC SHEAR TOMOGRAPHY , 2010, 1002.3383.
[37] M. White,et al. On using angular cross-correlations to determine source redshift distributions , 2013, 1302.0857.
[38] J. Newman,et al. Evolution and Color Dependence of the Galaxy Angular Correlation Function: 350,000 Galaxies in 5 Square Degrees , 2004, astro-ph/0403423.
[39] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[40] R. Nichol,et al. PHOTOMETRIC ESTIMATES OF REDSHIFTS AND DISTANCE MODULI FOR TYPE Ia SUPERNOVAE , 2010, 1001.0738.
[41] A Model-independent Photometric Redshift Estimator for Type Ia Supernovae , 2006, astro-ph/0609639.
[42] Jeffrey A. Newman,et al. RECONSTRUCTING REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS: TESTS AND AN OPTIMIZED RECIPE , 2010, 1003.0687.
[43] M. Takada,et al. A CLIPPING METHOD TO MITIGATE THE IMPACT OF CATASTROPHIC PHOTOMETRIC REDSHIFT ERRORS ON WEAK LENSING TOMOGRAPHY , 2010, 1002.2476.
[44] SLAC,et al. Sample variance in photometric redshift calibration: cosmological biases and survey requirements , 2011, 1109.5691.
[45] A. Cooray,et al. COSMOLOGY WITH PHOTOMETRIC SURVEYS OF TYPE Ia SUPERNOVAE , 2009, 0909.2692.
[46] Judith G. Cohen,et al. Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph , 2012, 1206.0737.
[47] A. Connolly,et al. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.
[48] W. M. Wood-Vasey,et al. THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.
[49] S. Schmidt,et al. CHARACTERIZING AND PROPAGATING MODELING UNCERTAINTIES IN PHOTOMETRICALLY DERIVED REDSHIFT DISTRIBUTIONS , 2010, 1011.2239.
[50] R. Nichol,et al. Euclid Definition Study Report , 2011, 1110.3193.
[51] Edward J. Wollack,et al. Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA Final Report , 2013, 1305.5422.
[52] A. Szalay,et al. Spectral Classification of Quasars in the Sloan Digital Sky Survey: Eigenspectra, Redshift, and Luminosity Effects , 2004, astro-ph/0408578.
[53] G. Narayan,et al. Survey requirements for accurate and precise photometric redshifts for Type Ia supernovae , 2007, 0708.0033.
[54] Richard Kessler,et al. PHOTOMETRIC TYPE Ia SUPERNOVA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA , 2011, 1107.5106.
[55] J. Newman,et al. The DEEP2 Galaxy Redshift Survey: Color and Luminosity Dependence of Galaxy Clustering at z ∼ 1 , 2007, 0708.0004.
[56] A. Ealet,et al. Investigating emission-line galaxy surveys with the Sloan Digital Sky Survey infrastructure , 2012, 1207.4321.
[57] A. J. Connolly,et al. REDUCING THE DIMENSIONALITY OF DATA: LOCALLY LINEAR EMBEDDING OF SLOAN GALAXY SPECTRA , 2009, 0907.2238.
[58] J. Frieman,et al. Photometric Redshift Error Estimators , 2007, 0711.0962.
[59] Hu Zhan,et al. Cosmic tomographies: baryon acoustic oscillations and weak lensing , 2006 .
[60] O. Dor'e,et al. USING CROSS CORRELATIONS TO CALIBRATE LENSING SOURCE REDSHIFT DISTRIBUTIONS: IMPROVING COSMOLOGICAL CONSTRAINTS FROM UPCOMING WEAK LENSING SURVEYS , 2013, 1306.0534.
[61] R. J. Brunner,et al. Sparse representation of photometric redshift probability density functions: preparing for petascale astronomy , 2014, 1404.6442.
[62] L. Knox,et al. Baryon Oscillations and Consistency Tests for Photometrically Determined Redshifts of Very Faint Galaxies , 2005, astro-ph/0509260.
[63] S. Baumont,et al. A new method to improve photometric redshift reconstruction - Applications to the Large Synoptic Survey Telescope , 2013, 1301.3010.
[64] A. Ealet,et al. The BigBoss Experiment , 2011 .
[65] J. Neyman. Contribution to the Theory of Sampling Human Populations , 1938 .
[66] F. Castander,et al. MEASURING BARYON ACOUSTIC OSCILLATIONS ALONG THE LINE OF SIGHT WITH PHOTOMETRIC REDSHIFS: THE PAU SURVEY , 2009 .
[67] Patrick J. McCarthy,et al. The Gemini Deep Deep Survey: I. Introduction to the Survey, Catalogs and Composite Spectra , 2004, astro-ph/0402436.
[68] Andrew P. Hearin,et al. General Requirements on Matter Power Spectrum Predictions for Cosmology with Weak Lensing Tomography , 2011, 1111.0052.
[69] Johannes Benkhoff. messenger , 2021, Birth….
[70] R. Nichol,et al. GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.
[71] Jeffrey A. Newman,et al. Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-Correlations , 2008, 0805.1409.
[72] R. Nichol,et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS) - an unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2 , 2013, 1303.2623.
[73] S. Bamford,et al. Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.
[74] S. Roweis,et al. K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.
[75] R. J. Brunner,et al. TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.
[76] A. Mazure,et al. The VIMOS VLT deep survey - First epoch VVDS-deep survey: 11 564 spectra with 17.5 $\leq$ I$_\textit{\textbf{\small AB}}$ $\leq$ 24, and the redshift distribution over 0 $\leq$ z $\leq$ 5 , 2004, astro-ph/0409133.
[77] Measuring the Cosmic Equation of State with Counts of Galaxies. , 2000, The Astrophysical journal.
[78] G. Bernstein,et al. Size of Spectroscopic Calibration Samples for Cosmic Shear Photometric Redshifts , 2007, 0712.1562.
[79] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[80] Huan Lin,et al. Estimating the redshift distribution of photometric galaxy samples – II. Applications and tests of a new method , 2008, 0801.3822.
[81] R. Trotta. Bayesian Methods in Cosmology , 2017, 1701.01467.
[82] Masahiro Takada,et al. Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration , 2006 .
[83] D. Gerdes,et al. PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.
[84] Y. Mellier,et al. The VIRMOS deep imaging survey - I. Overview, survey strategy, and CFH12K observations , 2004 .
[85] S. Maddox,et al. zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.
[86] K. Cook,et al. LOWER BOUNDS ON PHOTOMETRIC REDSHIFT ERRORS FROM TYPE Ia SUPERNOVA TEMPLATES , 2009, 0907.5421.
[87] A. Kim,et al. Correlated Supernova Systematics and Ground Based Surveys , 2011, 1102.1992.