Sampling Design Methods for Water Distribution Model Calibration

Field sampling is sometimes performed to support modeling activities—specifically, to estimate the parameters of a mathematical model or, more accurately, to calibrate the model. In this case, a relevant question for field samplings design is “how to maximize the confidence in estimated parameter values, given a level of sampling effort?” We approach this question using established ideas in parameter estimation and sampling design theory and propose general sensitivity-based methods to rank the locations and types of measurements for estimating the parameters of a water distribution network model. The proposed methods are suboptimal, yet practical, and are applied to select good tracer and pressure measurement locations for estimating pipe roughness coefficients. These particular results suggest that, when compared to pressure measurements, tracer measurements can be informative for calibrating network hydraulic parameters but one must take more care in selecting their location. Using the proposed methods...

[1]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[2]  B. Hobbs,et al.  Review of Ground‐Water Quality Monitoring Network Design , 1993 .

[3]  Robert M. Clark,et al.  Modeling Chlorine Residuals in Drinking‐Water Distribution Systems , 1994 .

[4]  Prabhata K. Swamee,et al.  Explicit Equations for Pipe-Flow Problems , 1976 .

[5]  Uri Shamir,et al.  Water Distribution Systems Analysis , 1968 .

[6]  Lindell Ormsbee Implicit Network Calibration , 1989 .

[7]  L. Ormsbee,et al.  Explicit Pipe Network Calibration , 1986 .

[8]  C. Voss,et al.  Behavior of sensitivities in the one-dimensional advection-dispersion equation: Implications for parameter estimation and sampling design , 1987 .

[9]  Therese A. Stukel,et al.  Comparing Three Sampling Designs for Monitoring Coliforms in Small Community Water Systems , 1987 .

[10]  Paul F. Boulos,et al.  An explicit algorithm for calculating operating parameters for water networks , 1991 .

[11]  R. W. Andrews,et al.  Sensitivity Analysis for Steady State Groundwater Flow Using Adjoint Operators , 1985 .

[12]  P. Boulos,et al.  Discrete Volume‐Element Method for Network Water‐Quality Models , 1993 .

[13]  M. B. Beck,et al.  Water quality modeling: A review of the analysis of uncertainty , 1987 .

[14]  Thomas M. Walski Case Study: Pipe Network Model Calibration Issues , 1986 .

[15]  Paul F. Boulos,et al.  Explicit calculation of pipe-network parameters , 1990 .

[16]  Mark S. Kennedy,et al.  Calibrating Hydraulic Analyses of Distribution Systems Using Fluoride Tracer Studies , 1991 .

[17]  Thomas M. Walski Assuring Accurate Model Calibration , 1985 .

[18]  Robert M. Clark,et al.  Modeling contaminant propagation in drinking-water distribution systems , 1993 .

[19]  Mark A. Kramer,et al.  Algorithm 658: ODESSA–an ordinary differential equation solver with explicit simultaneous sensitivity analysis , 1988, TOMS.

[20]  R. A. Deininger,et al.  Optimal Locations of Monitoring Stations in Water Distribution System , 1992 .

[21]  T. Walski Technique for Calibrating Network Models , 1983 .

[22]  Don J. Wood,et al.  Reliability of Algorithms for Pipe Network Analysis , 1981 .

[23]  Robert M. Clark,et al.  Field‐Testing Distribution Water Quality Models , 1991 .

[24]  H. S. Rao,et al.  Extended Period Simulation of Water Systems—Part A , 1977 .

[25]  Chuda Basnet,et al.  Parameter Estimation for Water Distribution Networks , 1991 .

[26]  J. Liggett,et al.  Inverse Transient Analysis in Pipe Networks , 1994 .

[27]  John M. Mulvey,et al.  Contaminated groundwater remediation design using simulation, optimization, and sensitivity theory: 1. Model development , 1988 .

[28]  Robert M. Clark,et al.  MODELING DISTRIBUTION-SYSTEM WATER QUALITY; DYNAMIC APPROACH , 1988 .