Granulation of Knowledge: Similarity Based Approach in Information and Decision Systems

[1]  Sadaaki Miyamoto,et al.  Rough Sets and Current Trends in Computing , 2012, Lecture Notes in Computer Science.

[2]  H. Poincaré Science and Hypothesis , 1906 .

[3]  Lech Polkowski,et al.  Granulation of Knowledge in Decision Systems: The Approach Based on Rough Inclusions. The Method and Its Applications , 2007, RSEISP.

[4]  Andrzej Skowron,et al.  Information Granulation and Pattern Recognition , 2004, Rough-Neural Computing: Techniques for Computing with Words.

[5]  Zdzislaw Pawlak,et al.  On a problem concerning dependence spaces , 1992, Fundam. Informaticae.

[6]  Andrzej Skowron,et al.  Rough mereology: A new paradigm for approximate reasoning , 1996, Int. J. Approx. Reason..

[7]  Arkadiusz Wojna,et al.  Analogy-Based Reasoning in Classifier Construction , 2005, Trans. Rough Sets.

[8]  Lech Polkowski,et al.  On Rough Set Logics Based on Similarity Relations , 2005, Fundam. Informaticae.

[9]  Yiyu Yao,et al.  Perspectives of granular computing , 2005, 2005 IEEE International Conference on Granular Computing.

[10]  R. Słowiński,et al.  Learning Decision Rules from Similarity Based Rough Approximations , 1998 .

[11]  Yiyu Yao,et al.  Granular Computing: basic issues and possible solutions , 2007 .

[12]  Janusz Kacprzyk,et al.  Computing with Words in Information/Intelligent Systems 1 , 1999 .

[13]  Jerzy W. Grzymala-Busse,et al.  LERS-A System for Learning from Examples Based on Rough Sets , 1992, Intelligent Decision Support.

[14]  R. Słowiński Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory , 1992 .

[15]  Yingxu Wang,et al.  On Cognitive Informatics , 2002, Proceedings First IEEE International Conference on Cognitive Informatics.

[16]  K. Upton,et al.  A modern approach , 1995 .

[17]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[18]  Z. Pawlak,et al.  Rough membership functions , 1994 .

[19]  Tsau Young Lin,et al.  Topological and Fuzzy Rough Sets , 1992, Intelligent Decision Support.

[20]  Jerzy W. Grzymala-Busse,et al.  Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction , 2004, Trans. Rough Sets.

[21]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[22]  Roman Słowiński,et al.  Intelligent Decision Support , 1992, Theory and Decision Library.

[23]  Lech Polkowski,et al.  Rough Sets in Knowledge Discovery 2 , 1998 .

[24]  T. Y. Lin,et al.  GRANULAR COMPUTING: From Rough Sets and Neighborhood Systems to Information Granulation and Computing with Words , 1997 .

[25]  Zdzisław Pawlak On rough dependency of attributes in information systems , 1985 .

[26]  Andrzej Skowron,et al.  Rough-Neural Computing , 2004, Cognitive Technologies.

[27]  Lech Polkowski,et al.  Formal granular calculi based on rough inclusions , 2005, 2005 IEEE International Conference on Granular Computing.

[28]  Lech Polkowski,et al.  Toward Rough Set Foundations. Mereological Approach , 2004, Rough Sets and Current Trends in Computing.

[29]  Lech Polkowski,et al.  A Rough Set Paradigm for Unifying Rough Set Theory and Fuzzy Set Theory , 2003, RSFDGrC.

[30]  J. M. Bocheński Die zeitgenössischen Denkmethoden , 1959 .

[31]  David G. Stork,et al.  Pattern Classification , 1973 .

[32]  T. Y. Lin,et al.  Neighborhood systems and relational databases , 1988, CSC '88.

[33]  A. Skowron,et al.  Towards adaptive calculus of granules , 1998 .

[34]  Vijay K. Rohatgi,et al.  Advances in Fuzzy Set Theory and Applications , 1980 .

[35]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[36]  J.F.A.K. van Benthem,et al.  A manual of intensional logic , 1989 .

[37]  Tsau Young Lin,et al.  A Roadmap from Rough Set Theory to Granular Computing , 2006, RSKT.

[38]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[39]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[40]  Andrzej Skowron,et al.  Boolean Reasoning for Decision Rules Generation , 1993, ISMIS.

[41]  Tsau Young Lin,et al.  Granular Computing: Fuzzy Logic and Rough Sets , 1999 .

[42]  Lech Polkowski,et al.  A Note on 3-valued Rough Logic Accepting Decision Rules , 2004, Fundam. Informaticae.

[43]  Andrzej Skowron,et al.  Rough Mereology , 1994, ISMIS.

[44]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[45]  Z. Pawlak,et al.  Partial dependency of attributes , 1988 .

[46]  Lech Polkowski Rough-fuzzy-neurocomputing based on rough mereological calculus of granules , 2005, Int. J. Hybrid Intell. Syst..

[47]  Sinh Hoa Nguyen,et al.  Regularity analysis and its applications in data mining , 2000 .

[48]  Zdzisław Pawlak,et al.  Dependency of attributes in information systems , 1985 .

[49]  Andrzej Skowron,et al.  Information granules: Towards foundations of granular computing , 2001 .

[50]  Rudolf Wille,et al.  Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts , 2009, ICFCA.

[51]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[52]  Lech Polkowski,et al.  A model of granular computing with applications. granules from rough inclusions in information systems , 2006, 2006 IEEE International Conference on Granular Computing.

[53]  Tsau Young Lin,et al.  Granular computing: examples, intuitions and modeling , 2005, 2005 IEEE International Conference on Granular Computing.