An Efficient Join Query Processing Based on MJR Framework
暂无分享,去创建一个
[1] Anthony K. H. Tung,et al. MAP-JOIN-REDUCE: Toward Scalable and Efficient Data Analysis on Large Clusters , 2011, IEEE Transactions on Knowledge and Data Engineering.
[2] Robert L. Grossman,et al. Compute and storage clouds using wide area high performance networks , 2008, Future Gener. Comput. Syst..
[3] Mirek Riedewald,et al. Processing theta-joins using MapReduce , 2011, SIGMOD '11.
[4] Robert L. Grossman,et al. Sector and Sphere: the design and implementation of a high-performance data cloud , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[5] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[6] David J. DeWitt,et al. A performance evaluation of four parallel join algorithms in a shared-nothing multiprocessor environment , 1989, SIGMOD '89.
[7] Hyeonsang Eom,et al. Scatter-Gather-Merge: An efficient star-join query processing algorithm for data-parallel frameworks , 2011, Cluster Computing.
[8] GhemawatSanjay,et al. The Google file system , 2003 .
[9] Rob Pike,et al. Interpreting the data: Parallel analysis with Sawzall , 2005, Sci. Program..
[10] David J. DeWitt,et al. Clustera: an integrated computation and data management system , 2008, Proc. VLDB Endow..
[11] Daniel J. Abadi,et al. Column oriented Database Systems , 2009, Proc. VLDB Endow..
[12] Douglas Stott Parker,et al. Map-reduce-merge: simplified relational data processing on large clusters , 2007, SIGMOD '07.
[13] Jairam Chandar. Join Algorithms using Map/Reduce , 2010 .