On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives

The structure of the search space explains the behavior of multiobjective search algorithms, and helps to design well-performing approaches. In this work, we analyze the properties of multiobjective combinatorial search spaces, and we pay a particular attention to the correlation between the objective functions. To do so, we extend the multiobjective NK-landscapes in order to take the objective correlation into account. We study the co-influence of the problem dimension, the degree of non-linearity, the number of objectives, and the objective correlation on the structure of the Pareto optimal set, in terms of cardinality and number of supported solutions, as well as on the number of Pareto local optima. This work concludes with guidelines for the design of multiobjective local search algorithms, based on the main fitness landscape features.

[1]  Harold Hotelling,et al.  Rank Correlation and Tests of Significance Involving No Assumption of Normality , 1936 .

[2]  Jim Smith,et al.  New Methods for Tunable, Random Landscapes , 2000, FOGA.

[3]  Paolo Serafini,et al.  Some Considerations about Computational Complexity for Multi Objective Combinatorial Problems , 1987 .

[4]  Thomas Stützle,et al.  On the Performance of Local Search for the Biobjective Traveling Salesman Problem , 2010, Advances in Multi-Objective Nature Inspired Computing.

[5]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[6]  X. Gandibleux,et al.  Approximative solution methods for multiobjective combinatorial optimization , 2004 .

[7]  Thomas Sty Clusters of Non-dominated Solutions in Multiobjective Combinatorial Optimization. , 2006 .

[8]  Kiyoshi Tanaka,et al.  Insights on properties of multiobjective MNK-landscapes , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[9]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[10]  Thomas Stützle,et al.  A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices , 2006, Eur. J. Oper. Res..

[11]  Deon Garrett Plateau Connection Structure and multiobjective metaheuristic performance , 2009, 2009 IEEE Congress on Evolutionary Computation.

[12]  Matthias Ehrgott,et al.  Multicriteria Optimization (2. ed.) , 2005 .

[13]  Sébastien Vérel,et al.  Analyzing the Effect of Objective Correlation on the Efficient Set of MNK-Landscapes , 2011, LION.

[14]  E. Weinberger NP Completeness of Kauffman's N-k Model, A Tuneable Rugged Fitness Landscape , 1996 .

[15]  Sébastien Vérel,et al.  Pareto Local Optima of Multiobjective NK-Landscapes with Correlated Objectives , 2011, EvoCOP.

[16]  Dipankar Dasgupta,et al.  Multiobjective Landscape Analysis and the Generalized Assignment Problem , 2008, LION.

[17]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[18]  Marco Laumanns,et al.  On Sequential Online Archiving of Objective Vectors , 2011, EMO.

[19]  Kiyoshi Tanaka,et al.  Working principles, behavior, and performance of MOEAs on MNK-landscapes , 2007, Eur. J. Oper. Res..

[20]  El-Ghazali Talbi,et al.  On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems , 2012, J. Heuristics.

[21]  Peter Merz,et al.  Advanced Fitness Landscape Analysis and the Performance of Memetic Algorithms , 2004, Evolutionary Computation.

[22]  I. Murthy,et al.  A parametric approach to solving bicriterion shortest path problems , 1991 .

[23]  David Corne,et al.  Bounded Pareto Archiving: Theory and Practice , 2004, Metaheuristics for Multiobjective Optimisation.

[24]  Keith E. Mathias,et al.  Niches in NK-Landscapes , 2000, FOGA.

[25]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[26]  David W. Corne,et al.  Towards Landscape Analyses to Inform the Design of Hybrid Local Search for the Multiobjective Quadratic Assignment Problem , 2002, HIS.

[27]  Janet Wiles,et al.  Maximally rugged NK landscapes contain the highest peaks , 2005, GECCO '05.

[28]  Sébastien Vérel,et al.  A study of NK landscapes' basins and local optima networks , 2008, GECCO '08.

[29]  Thomas Stützle,et al.  On local optima in multiobjective combinatorial optimization problems , 2007, Ann. Oper. Res..