Attentional Modulation and Selection – An Integrated Approach

Various models of the neural mechanisms of attentional modulation in the visual cortex have been proposed. In general, these models assume that an ‘attention’ parameter is provided separately. Its value as well as the selection of neuron(s) to which it applies are assumed, but its source and the selection mechanism are unspecified. Here we show how the Selective Tuning model of visual attention can account for the modulation of the firing rate at the single neuron level, and for the temporal pattern of attentional modulations in the visual cortex, in a self-contained formulation that simultaneously determines the stimulus elements to be attended while modulating the relevant neural processes.

[1]  J. Duncan The locus of interference in the perception of simultaneous stimuli. , 1980, Psychological review.

[2]  T. Sejnowski,et al.  A selection model for motion processing in area MT of primates , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  Kunihiko Fukushima,et al.  A neural network model for selective attention in visual pattern recognition , 1986, Biological Cybernetics.

[4]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[5]  Michael W. Spratling Predictive coding as a model of biased competition in visual attention , 2008, Vision Research.

[6]  J. Fuster Inferotemporal units in selective visual attention and short-term memory. , 1990, Journal of neurophysiology.

[7]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[8]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[9]  P. Tiesinga,et al.  Role of interneuron diversity in the cortical microcircuit for attention. , 2008, Journal of neurophysiology.

[10]  A. Treisman,et al.  Illusory conjunctions in the perception of objects , 1982, Cognitive Psychology.

[11]  John K. Tsotsos,et al.  Neurobiology of Attention , 2005 .

[12]  S. Treue,et al.  Feature-Based Attention Increases the Selectivity of Population Responses in Primate Visual Cortex , 2004, Current Biology.

[13]  John K. Tsotsos,et al.  Attention links sensing to recognition , 2008, Image Vis. Comput..

[14]  John K. Tsotsos,et al.  The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item , 2003, Vision Research.

[15]  John K. Tsotsos A Computational Perspective on Visual Attention , 2011 .

[16]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[17]  John K. Tsotsos,et al.  The center-surround profile of the focus of attention arises from recurrent processing in visual cortex. , 2009, Cerebral cortex.

[18]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[19]  Xiao-Jing Wang,et al.  An Integrated Microcircuit Model of Attentional Processing in the Neocortex , 2007, The Journal of Neuroscience.

[20]  John K. Tsotsos,et al.  An Attentional Prototype for Early Vision , 1992, ECCV.

[21]  G. Boynton Attention and visual perception , 2005, Current Opinion in Neurobiology.

[22]  C. Schroeder,et al.  Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. , 2000, Cerebral cortex.

[23]  C. Bundesen,et al.  A neural theory of visual attention and short-term memory (NTVA) , 2011, Neuropsychologia.

[24]  Paul S Khayat,et al.  Attention Differentially Modulates Similar Neuronal Responses Evoked by Varying Contrast and Direction Stimuli in Area MT , 2010, The Journal of Neuroscience.

[25]  Walter Schneider,et al.  Controlled and Automatic Human Information Processing: 1. Detection, Search, and Attention. , 1977 .

[26]  P. Milner A model for visual shape recognition. , 1974, Psychological review.

[27]  Michael W. Spratling,et al.  A Feedback Model of Visual Attention , 2004, Journal of Cognitive Neuroscience.

[28]  J. Duncan Selective attention and the organization of visual information. , 1984, Journal of experimental psychology. General.

[29]  S. Hochstein,et al.  Task difficulty and the specificity of perceptual learning , 1997, Nature.

[30]  Alex R. Wade,et al.  Representation of Concurrent Stimuli by Population Activity in Visual Cortex , 2014, Neuron.

[31]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[32]  Joonyeol Lee,et al.  A Normalization Model of Attentional Modulation of Single Unit Responses , 2009, PloS one.

[33]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[34]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[35]  C. Koch,et al.  Attention activates winner-take-all competition among visual filters , 1999, Nature Neuroscience.

[36]  R. VanRullen Visual Attention: A Rhythmic Process? , 2013, Current Biology.

[37]  Michael W. Spratling Reconciling Predictive Coding and Biased Competition Models of Cortical Function , 2008, Frontiers Comput. Neurosci..

[38]  R. Desimone,et al.  A backward progression of attentional effects in the ventral stream , 2009, Proceedings of the National Academy of Sciences.

[39]  Christof Koch,et al.  Modeling attention to salient proto-objects , 2006, Neural Networks.

[40]  Mark D'Esposito,et al.  Top-down flow of visual spatial attention signals from parietal to occipital cortex. , 2009, Journal of vision.

[41]  F. Hamker The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. , 2005, Cerebral cortex.

[42]  D. Broadbent Perception and communication , 1958 .

[43]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[44]  C. L. M. The Psychology of Attention , 1890, Nature.

[45]  Gustavo Deco,et al.  Computational neuroscience of vision , 2002 .

[46]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[47]  R. Desimone,et al.  The Role of Neural Mechanisms of Attention in Solving the Binding Problem , 1999, Neuron.

[48]  John K. Tsotsos The Complexity of Perceptual Search Tasks , 1989, IJCAI.

[49]  John K. Tsotsos An inhibitory beam for attentional selection , 1994 .

[50]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[51]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[52]  Michael S. Landy,et al.  Computational models of visual attention , 2011, Vision Research.

[53]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[54]  Pieter R. Roelfsema,et al.  Different Processing Phases for Features, Figures, and Selective Attention in the Primary Visual Cortex , 2007, Neuron.

[55]  John K. Tsotsos Analyzing vision at the complexity level , 1990, Behavioral and Brain Sciences.

[56]  A. Treisman Strategies and models of selective attention. , 1969, Psychological review.

[57]  J. Deutsch Perception and Communication , 1958, Nature.

[58]  Wolfgang Maass,et al.  On the Computational Power of Winner-Take-All , 2000, Neural Computation.

[59]  John K. Tsotsos On the relative complexity of active vs. passive visual search , 2004, International Journal of Computer Vision.