Searching for optimal stimuli: ascending a neuron’s response function

Many methods used to analyze neuronal response assume that neuronal activity has a fundamentally linear relationship to the stimulus. However, some neurons are strongly sensitive to multiple directions in stimulus space and have a highly nonlinear response. It can be difficult to find optimal stimuli for these neurons. We demonstrate how successive linear approximations of neuronal response can effectively carry out gradient ascent and move through stimulus space towards local maxima of the response. We demonstrate search results for a simple model neuron and two models of a highly selective neuron.

[1]  Eero P. Simoncelli,et al.  To appear in: The New Cognitive Neurosciences, 3rd edition Editor: M. Gazzaniga. MIT Press, 2004. Characterization of Neural Responses with Stochastic Stimuli , 2022 .

[2]  K. Sen,et al.  Spectral-temporal Receptive Fields of Nonlinear Auditory Neurons Obtained Using Natural Sounds , 2022 .

[3]  R. D. Patterson,et al.  Using genetic algorithms to find the most effective stimulus for sensory neurons , 2003, Journal of Neuroscience Methods.

[4]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[5]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[6]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[7]  A. Doupe,et al.  Song-selective auditory circuits in the vocal control system of the zebra finch. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[8]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[9]  N. C. Singh,et al.  Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli , 2001 .

[10]  E Harth,et al.  Alopex: a stochastic method for determining visual receptive fields. , 1974, Vision research.

[11]  K. O’Connor,et al.  Adaptive stimulus optimization for auditory cortical neurons. , 2005, Journal of neurophysiology.

[12]  R. Mooney Different Subthreshold Mechanisms Underlie Song Selectivity in Identified HVc Neurons of the Zebra Finch , 2000, The Journal of Neuroscience.

[13]  D. Margoliash,et al.  Temporal and harmonic combination-sensitive neurons in the zebra finch's HVc , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[15]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[16]  Stephen A. Engel,et al.  FMRI measurements of changes in color and orientation tuning in V1 , 2002 .

[17]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[18]  M. Lewicki Intracellular Characterization of Song-Specific Neurons in the Zebra Finch Auditory Forebrain , 1996, The Journal of Neuroscience.

[19]  Christian K. Machens,et al.  Testing the Efficiency of Sensory Coding with Optimal Stimulus Ensembles , 2005, Neuron.

[20]  Robert J. Butera,et al.  Sequential Optimal Design of Neurophysiology Experiments , 2009, Neural Computation.

[21]  Kechen Zhang,et al.  How Optimal Stimuli for Sensory Neurons Are Constrained by Network Architecture , 2008, Neural Computation.

[22]  William Bialek,et al.  Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions , 2002, Neural Computation.

[23]  A M Aertsen,et al.  Reverse-correlation methods in auditory research , 1983, Quarterly Reviews of Biophysics.

[24]  Tim Gollisch,et al.  From response to stimulus: adaptive sampling in sensory physiology , 2007, Current Opinion in Neurobiology.

[25]  Xiaoqin Wang,et al.  Spectral integration in A1 of awake primates: neurons with single- and multipeaked tuning characteristics. , 2003, Journal of neurophysiology.

[26]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[27]  I. Nelken,et al.  In search of the best stimulus: An optimization procedure for finding efficient stimuli in the cat auditory cortex , 1994, Hearing Research.

[28]  N. Suga,et al.  Plasticity of bat's central auditory system evoked by focal electric stimulation of auditory and/or somatosensory cortices. , 2001, Journal of neurophysiology.

[29]  de Ruyter van Steveninck,et al.  Real-time performance of a movement-sensitive neuron in the blowfly visual system , 1986 .

[30]  Michael J. Anderson,et al.  Auditory stimulus optimization with feedback from fuzzy clustering of neuronal responses , 2002, IEEE Transactions on Information Technology in Biomedicine.

[31]  L. Paninski Convergence Properties of Some Spike-Triggered Analysis Techniques , 2002 .

[32]  N. Suga,et al.  Reorganization of the auditory cortex specialized for echo-delay processing in the mustached bat. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[34]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[35]  Jonathan Z. Simon,et al.  Robust Spectrotemporal Reverse Correlation for the Auditory System: Optimizing Stimulus Design , 2000, Journal of Computational Neuroscience.

[36]  D. Margoliash Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  H M Sakai,et al.  Signal transmission in the catfish retina. V. Sensitivity and circuit. , 1987, Journal of neurophysiology.

[38]  D. McAlpine,et al.  Spike-frequency adaptation in the inferior colliculus. , 2004, Journal of neurophysiology.

[39]  N Suga,et al.  Corticofugal Modulation of Time-Domain Processing of Biosonar Information in Bats , 1996, Science.

[40]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[41]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[42]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[43]  D Margoliash,et al.  Gradual Emergence of Song Selectivity in Sensorimotor Structures of the Male Zebra Finch Song System , 1999, The Journal of Neuroscience.

[44]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[45]  Christian K. Machens,et al.  Adaptive sampling by information maximization. , 2001, Physical review letters.

[46]  D Margoliash,et al.  Functional organization of forebrain pathways for song production and perception. , 1997, Journal of neurobiology.

[47]  D. Q. Nykamp,et al.  Computing linear approximations to nonlinear neuronal response , 2008, Network.

[48]  E. D. Adrian,et al.  The Basis of Sensation , 1928, The Indian Medical Gazette.

[49]  Peter Földiák,et al.  Stimulus optimisation in primary visual cortex , 2001, Neurocomputing.

[50]  R. Desimone Face-Selective Cells in the Temporal Cortex of Monkeys , 1991, Journal of Cognitive Neuroscience.

[51]  Eric T. Carlson,et al.  A neural code for three-dimensional object shape in macaque inferotemporal cortex , 2008, Nature Neuroscience.

[52]  Liam Paninski,et al.  Automating the design of informative sequences of sensory stimuli , 2011, Journal of Computational Neuroscience.

[53]  Robert Shapley,et al.  Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. , 2002, Journal of vision.

[54]  P. Z. Marmarelis,et al.  Analysis of Physiological Systems: The White-Noise Approach , 2011 .

[55]  Liam Paninski,et al.  Convergence properties of three spike-triggered analysis techniques , 2003, NIPS.