How many entries of a typical orthogonal matrix can be approximated by independent normals
暂无分享,去创建一个
[1] N. L. Johnson,et al. Linear Statistical Inference and Its Applications , 1966 .
[2] A. J. Stam. LIMIT THEOREMS FOR UNIFORM DISTRIBUTIONS ON SPHERES IN HIGH-DIMENSIONAL EUCLIDEAN SPACES , 1982 .
[3] Gérard Letac. Isotropy and Sphericity: Some Characterisations of the Normal Distribution , 1981 .
[4] L. Gallardo. Au sujet du contenu probabiliste d'un lemme d'Henri Poincaré , 1981 .
[5] Dag Jonsson. Some limit theorems for the eigenvalues of a sample covariance matrix , 1982 .
[6] Z. Bai,et al. On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .
[7] Kurt Johansson,et al. ON RANDOM MATRICES FROM THE COMPACT CLASSICAL GROUPS , 1997 .
[8] Persi Diaconis,et al. Linear functionals of eigenvalues of random matrices , 2000 .
[9] Steffen L. Lauritzen,et al. Finite de Finetti theorems in linear models and multivariate analysis , 1992 .
[10] H. McKean. Geometry of Differential Space , 1973 .
[11] Calyampudi R. Rao,et al. Linear Statistical Inference and Its Applications. , 1975 .
[12] Amir Dembo,et al. Large Deviations Techniques and Applications , 1998 .
[13] N. O'Connell,et al. PATTERNS IN EIGENVALUES: THE 70TH JOSIAH WILLARD GIBBS LECTURE , 2003 .
[14] Émile Borel,et al. Introduction géométrique à quelques théories physiques , 1915, The Mathematical Gazette.
[15] Intégrales matricielles et probabilités non-commutatives , 2003 .
[16] Michel Loève,et al. Probability Theory I , 1977 .
[17] P. Diaconis,et al. Brownian motion and the classical groups , 2002 .
[18] H. Piaggio. Mathematical Analysis , 1955, Nature.
[19] S. Geman. A Limit Theorem for the Norm of Random Matrices , 1980 .
[20] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[21] M. L. Eaton. Group invariance applications in statistics , 1989 .
[22] D. Freedman,et al. A dozen de Finetti-style results in search of a theory , 1987 .
[23] H. Teicher,et al. Probability theory: Independence, interchangeability, martingales , 1978 .
[24] Tiefeng Jiang,et al. Maxima of entries of Haar distributed matrices , 2005 .
[25] K. E.,et al. The Theory of Heat , 1929, Nature.
[26] Z. Bai. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .
[27] Eric M. Rains,et al. High powers of random elements of compact Lie groups , 1997 .
[28] P. Diaconis,et al. On the eigenvalues of random matrices , 1994, Journal of Applied Probability.
[29] Anja Vogler,et al. An Introduction to Multivariate Statistical Analysis , 2004 .