The Inner 25 au Debris Distribution in the ϵ Eri System

NASA [NAS2-97001, SOF02-0061, SOF03-0092, NNX15AI86G]; Deutsches SOFIA Institut (DSI) under DLR [50 OK 0901]; DFG [Kr 2164/13-1, Kr 2164/15-1, Lo 1715/2-1]

[1]  Scott J. Kenyon,et al.  Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets , 2007, 0710.1065.

[2]  T. Roellig,et al.  A new window on the cosmos: The Stratospheric Observatory for Infrared Astronomy (SOFIA) , 2009 .

[3]  A. Amara,et al.  High-contrast imaging with Spitzer: deep observations of Vega, Fomalhaut, and ϵ Eridani , 2014, 1412.4816.

[4]  Paul S. Smith,et al.  Reduction Algorithms for the Multiband Imaging Photometer for Spitzer , 2005, astro-ph/0502079.

[5]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[6]  Gordon A. H. Walker,et al.  Evidence for a Long-Period Planet Orbiting ϵ Eridani , 2000, astro-ph/0009423.

[7]  K. Stapelfeldt,et al.  EPSILON ERIDANI'S PLANETARY DEBRIS DISK: STRUCTURE AND DYNAMICS BASED ON SPITZER AND CALTECH SUBMILLIMETER OBSERVATORY OBSERVATIONS , 2008, 0810.4564.

[8]  M. Wyatt,et al.  Dependence of a planet's chaotic zone on particle eccentricity: the shape of debris disc inner edges , 2011, 1110.1282.

[9]  R. Smith,et al.  Transience of Hot Dust around Sun-like Stars , 2006, astro-ph/0610102.

[10]  R. O. Gray,et al.  ABSOLUTE PHYSICAL CALIBRATION IN THE INFRARED , 2008, 0806.1910.

[11]  Benjamin J. Fulton,et al.  Limits on Planetary Companions from Doppler Surveys of Nearby Stars , 2016, 1606.03134.

[12]  G. Rieke,et al.  MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: STEEP DUST-SIZE DISTRIBUTIONS , 2011, 1111.0296.

[13]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[14]  J. Linsky,et al.  Measured Mass-Loss Rates of Solar-like Stars as a Function of Age and Activity , 2002, astro-ph/0203437.

[15]  Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I. , 2003, astro-ph/0308182.

[16]  C. Clarke,et al.  Debris disk size distributions: steady state collisional evolution with Poynting-Robertson drag and other loss processes , 2011, 1103.5499.

[17]  G. Rieke,et al.  A COMPREHENSIVE DUST MODEL APPLIED TO THE RESOLVED BETA PICTORIS DEBRIS DISK FROM OPTICAL TO RADIO WAVELENGTHS , 2016, 1605.01731.

[18]  G. Rieke,et al.  THE INNER DEBRIS STRUCTURE IN THE FOMALHAUT PLANETARY SYSTEM , 2015, 1512.03535.

[19]  W. Vacca,et al.  FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: THE FORCAST MID-INFRARED CAMERA , 2012, 1202.5021.

[20]  M. Wyatt,et al.  The scattering of small bodies in planetary systems: constraints on the possible orbits of cometary material , 2011, 1111.1858.

[21]  J. Bernard-Salas,et al.  CASSIS: THE CORNELL ATLAS OF SPITZER/INFRARED SPECTROGRAPH SOURCES. II. HIGH-RESOLUTION OBSERVATIONS , 2011, 1108.3507.

[22]  C. G. Tinney,et al.  Catalog of nearby exoplanets , 2006 .

[23]  Ari Laor,et al.  Spectroscopic constraints on the properties of dust in active galactic nuclei , 1993 .

[24]  S. Wolf,et al.  Collisional modelling of the AU Microscopii debris disc , 2015, 1506.04564.

[25]  H. Kaneda,et al.  Size Dependence of Dust Distribution around the Earth Orbit , 2016, 1702.03086.

[26]  F. P. Schloerb,et al.  Early science with the Large Millimetre Telescope: Deep LMT/AzTEC millimetre observations of ϵ Eridani and its surroundings , 2016 .

[27]  K. Stapelfeldt,et al.  ASTEROID BELTS IN DEBRIS DISK TWINS: VEGA AND FOMALHAUT , 2013, 1301.1331.

[28]  Erin C. Smith,et al.  EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY , 2012, 1205.0791.

[29]  M. Kama,et al.  A dearth of small particles in debris disks - An energy-constrained smallest fragment size , 2014, 1405.6834.

[30]  R. Paul Butler,et al.  THE HARPS-TERRA PROJECT. I. DESCRIPTION OF THE ALGORITHMS, PERFORMANCE, AND NEW MEASUREMENTS ON A FEW REMARKABLE STARS OBSERVED BY HARPS , 2012, 1202.2570.

[31]  K. Stapelfeldt,et al.  COMMON WARM DUST TEMPERATURES AROUND MAIN-SEQUENCE STARS , 2011 .

[32]  S. Morrison,et al.  PLANETARY CHAOTIC ZONE CLEARING: DESTINATIONS AND TIMESCALES , 2014, 1411.1378.

[33]  Mullard Space Science Laboratory,et al.  A Dust Ring around epsilon Eridani: Analog to the Young Solar System , 1998, astro-ph/9808224.

[34]  Marc J. Kuchner,et al.  COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD , 2010, 1008.0904.

[35]  A. C. Quillen,et al.  Structure in the Eridani Dusty Disk Caused by Mean Motion Resonances with a 0.3 Eccentricity Planet at Periastron , 2002 .

[36]  Olivier Guyon,et al.  High-contrast imaging of ϵ Eridani with ground-based instruments , 2016 .

[37]  Christopher C. Stark,et al.  The cold origin of the warm dust around ε Eridani , 2010, 1011.4882.

[38]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[39]  Gordon A. H. Walker,et al.  To appear in Astrophysical Journal Letters Evidence for a Long-period Planet Orbiting Epsilon Eridani 1 , 2000 .

[40]  Christopher C. Stark,et al.  THE TRANSIT LIGHT CURVE OF AN EXOZODIACAL DUST CLOUD , 2011, 1108.1396.

[41]  D. Padgett,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. I. The Stellar Calibrator Sample and the 24 μm Calibration , 2007, 0704.2195.

[42]  Andras Gaspar,et al.  THE DECAY OF DEBRIS DISKS AROUND SOLAR-TYPE STARS , 2014, 1402.6308.

[43]  F. Marzari,et al.  Dynamical stability of the inner belt around Epsilon Eridani , 2009 .

[44]  J. Lestrade,et al.  MAMBO image of the debris disk around epsilon Eridani : robustness of the azimuthal structure , 2015, 1503.03097.

[45]  Pierre Kervella,et al.  VLTI near-IR interferometric observations of Vega-like stars: Radius and age of a PsA, b Leo, b Pic, e Eri and t Cet , 2004 .

[46]  Alice C. Quillen,et al.  Predictions for a planet just inside Fomalhaut's eccentric ring , 2006, astro-ph/0605372.

[47]  C. Clarke,et al.  DEBRIS DISK SIZE DISTRIBUTIONS : STEADY STATE COLLISIONAL EVOLUTION WITH PR DRAG AND OTHER LOSS PROCESSES , 2022 .

[48]  D. Wilner,et al.  THE EPSILON ERIDANI SYSTEM RESOLVED BY MILLIMETER INTERFEROMETRY , 2015, 1507.01642.

[49]  P. Thebault Dust production in debris discs: constraints on the smallest grains , 2016, 1601.00907.

[50]  M. Wyatt Dust in Resonant Extrasolar Kuiper Belts: Grain Size and Wavelength Dependence of Disk Structure , 2005, astro-ph/0511219.

[51]  M. Wyatt,et al.  Do two-temperature debris discs have multiple belts? , 2014, 1408.4116.

[52]  Numerical Modeling of Dusty Debris Disks , 2005, astro-ph/0502135.

[53]  Austin,et al.  The planet search programme at the ESO CES and HARPS - IV. The search for Jupiter analogues around solar-like stars , 2012, 1211.7263.

[54]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[55]  John C. Mather,et al.  Signatures of Exosolar Planets in Dust Debris Disks , 1999, astro-ph/0007014.

[56]  Gordon A. H. Walker,et al.  The Extrasolar Planet ∊ Eridani b: Orbit and Mass , 2006 .