xTrek: An Influence-Aware Technique for Dijkstra's and A* Pathfinders

We propose a new pathfinding technique called xTrek that combines conventional pathfinding and influence fields; that is, we are introducing a new influence-sensitive pathfinder or influence-aware pathfinder. The leading idea of influence-aware pathfinding is to avoid unwanted regions and/or converge to desired regions of the search space during the path search. As shown throughout the paper, this region avoidance/convergence is more striking using our technique than in other field-aware pathfinders as, for example, risk-adverse pathfinders and constraint-aware navigation pathfinders. Furthermore, our technique constrains the search space even more than such state-of-the-art influence-aware pathfinders, aiming to reduce the memory space consumption, to speed up pathfinding computations, and at the same time to have better control on the paths to be discovered.

[1]  Adi Botea,et al.  Near Optimal Hierarchical Path-Finding , 2004, J. Game Dev..

[2]  Kostas E. Bekris,et al.  ACUMEN: Activity-Centric Crowd Authoring Using Influence Maps , 2016, CASA.

[3]  Vladimir J. Lumelsky,et al.  Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape , 1987, Algorithmica.

[4]  Randy Goebel,et al.  Computational intelligence - a logical approach , 1998 .

[5]  Norman I. Badler,et al.  Constraint-Aware Navigation in Dynamic Environments , 2013, MIG '13.

[6]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[7]  Ronald C. Arkin Path Planning For A Vision-Based Autonomous Robot , 1987, Other Conferences.

[8]  Nathan R. Sturtevant Incorporating Human Relationships Into Path Planning , 2013, AIIDE.

[9]  Albert L. Zobrist A Model of Visual Organization for the Game of Go , 1899 .

[10]  Nils J. Nilsson,et al.  Artificial Intelligence: A New Synthesis , 1997 .

[11]  Matti Tommiska,et al.  Dijkstra's Shortest Path Routing Algorithm in Reconfigurable Hardware , 2001, FPL.

[12]  Sushil J. Louis,et al.  Playing to learn: case-injected genetic algorithms for learning to play computer games , 2005, IEEE Transactions on Evolutionary Computation.

[13]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .

[14]  Steve Rabin,et al.  AI Game Programming Wisdom , 2002 .

[15]  Sushil J. Louis,et al.  Co-Evolving Influence Map Tree Based Strategy Game Players , 2007, 2007 IEEE Symposium on Computational Intelligence and Games.

[16]  Thomas Röfer,et al.  A Behavior Architecture for Autonomous Mobile Robots Based on Potential Fields , 2004, RoboCup.

[17]  Sushil J. Louis,et al.  Towards theCo-Evolution ofInfluence MapTreeBasedStrategy GamePlayers , 2006 .

[18]  Nils J. Nilsson,et al.  A Mobile Automaton: An Application of Artificial Intelligence Techniques , 1969, IJCAI.

[19]  Sule Yildirim Yayilgan,et al.  A survey on the need and use of AI in game agents , 2008, SpringSim '08.

[20]  T. Apostol Multi-variable calculus and linear algebra, with applications to differential equations and probability , 1969 .

[21]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[22]  Luciana Porcher Nedel,et al.  Simulating Pedestrian Behavior with Potential Fields , 2006, Computer Graphics International.

[23]  Yngvi Björnsson,et al.  Automated Decomposition of Game Maps , 2015, AIIDE.

[24]  Gill R. Tsouri,et al.  A modified Dijkstra's routing algorithm for increasing network lifetime in wireless body area networks , 2012, BODYNETS.

[25]  Nathan R. Sturtevant,et al.  Benchmarks for Grid-Based Pathfinding , 2012, IEEE Transactions on Computational Intelligence and AI in Games.

[26]  Mohd Shahrizal Sunar,et al.  A Comprehensive Study on Pathfinding Techniques for Robotics and Video Games , 2015, Int. J. Comput. Games Technol..

[27]  Johan Svensson,et al.  Influence Map-based controllers for Ms. PacMan and the ghosts , 2012, 2012 IEEE Conference on Computational Intelligence and Games (CIG).

[28]  Xu Jian Xin Game Artificial Intelligence Literature Survey on Game AI VENKATARAMANAN , 2008 .

[29]  Ian Millington,et al.  Artificial Intelligence for Games , 2006, The Morgan Kaufmann series in interactive 3D technology.

[30]  L. Nedel,et al.  Generating Steering Behaviors for Virtual Humanoids using BVP Control , 2007 .

[31]  Jur P. van den Berg,et al.  The visibility--voronoi complex and its applications , 2005, EuroCG.

[32]  Marcus Gallagher,et al.  An influence map model for playing Ms. Pac-Man , 2008, 2008 IEEE Symposium On Computational Intelligence and Games.

[33]  Roderic A. Grupen,et al.  The applications of harmonic functions to robotics , 1993, J. Field Robotics.

[34]  Jon Louis Bentley,et al.  Fast Algorithms for Constructing Minimal Spanning Trees in Coordinate Spaces , 1978, IEEE Transactions on Computers.

[35]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[36]  Edson Prestes e Silva,et al.  Sculpting potential fields in the BVP Path Planner , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[37]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[38]  J. Perhac,et al.  Using path-finding algorithms of graph theory for route-searching in geographical information systems , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.

[39]  Marcelo Kallmann,et al.  Geometric and Discrete Path Planning for Interactive Virtual Worlds , 2016, Geometric and Discrete Path Planning for Interactive Virtual Worlds.