h-Fold Sums from a Set with Few Products

In the present paper we show that if $A$ is a set of $n$ real numbers and the product set $A.A$ has at most $n^{1+\varepsilon}$ elements, then the $h$-fold sumset $hA$ has at least $n^{\log(h/2)/2\log2+1/2-f_h(\varepsilon)}$ elements, where $f_h(c)\to0$ as $c\to0$. We also prove results on the $h$-fold sumset $h(A.A)=A.A+\dots+A.A$.

[1]  Noga Alon,et al.  An Application of Graph Theory to Additive Number Theory , 1985, Eur. J. Comb..

[2]  Some remarks on Vinogradov's mean value theorem and Tarry's problem , 1996 .

[3]  Yong-Gao Chen,et al.  On sums and products of integers , 1999 .

[4]  Derrick Hart,et al.  Sums and products in finite fields: an integral geometric viewpoint , 2007, 0705.4256.

[5]  György Elekes,et al.  Convexity and Sumsets , 2000 .

[6]  Melvyn B. Nathanson,et al.  On sums and products of integers , 1997 .

[7]  T. Schoen,et al.  Arithmetic progressions in sparse sumsets , 2007 .

[8]  J. Solymosi On sum-sets and product-sets of complex numbers , 2005 .

[9]  József Solymosi,et al.  Bounding multiplicative energy by the sumset , 2009 .

[10]  On the size of k-fold sum and product sets of integers , 2003, math/0309055.

[11]  Paul Erdős,et al.  Studies in Pure Mathematics: To the Memory of Paul Turán , 1983 .

[12]  Mei-Chu Chang The Erdős-Szemerédi problem on sum set and product set , 2003 .

[13]  Tamás Erdélyi,et al.  Littlewood‐Type Problems on [0,1] , 1999 .

[14]  Kevin Ford,et al.  Sums and Products from a Finite Set of Real Numbers , 1998 .

[15]  Karsten Chipeniuk,et al.  Sums and Products of Distinct Sets and Distinct Elements in ℂ , 2009, Integers.

[16]  S. Konyagin,et al.  Additive properties of product sets in fields of prime order , 2007 .

[17]  József Solymosi,et al.  On the Number of Sums and Products , 2005 .

[18]  I. Ruzsa,et al.  Few sums, many products , 2003 .

[19]  Jean Bourgain,et al.  Mordell's exponential sum estimate revisited , 2005 .

[20]  Tim Jones,et al.  Solymosi's multiplicative energy bound for complex numbers , 2008, 0812.1454.

[21]  Jozsef Solymosi An upper bound on the multiplicative energy , 2008 .

[22]  Mei-Chu Chang,et al.  Factorization in generalized arithmetic progressions and application to the Erdős-Szemerédi sum-product problems , 2003 .