Reducing scattered light in LIGO’s third observing run

Noise due to scattered light has been a frequent disturbance in the advanced LIGO gravitational wave detectors, hindering the detection of gravitational waves. The non stationary scatter noise caused by low frequency motion can be recognized as arches in the time-frequency plane of the gravitational wave channel. In this paper, we characterize the scattering noise for LIGO and Virgo’s third observing run O3 from April, 2019 to March, 2020. We find at least two different populations of scattering noise and we investigate the multiple origins of one of them as well as its mitigation. We find that relative motion between two specific surfaces is strongly correlated with the presence of scattered light and we implement a technique to reduce this motion. We also present an algorithm using a witness channel to identify the times this noise can be present in the detector.

J. R. Palamos | M. J. Szczepa'nczyk | P. B. Covas | T. R. Saravanan | N. Kijbunchoo | P. King | M. Landry | B. Lantz | M. Lormand | A. Lundgren | M. Macinnis | D. Macleod | G. Mansell | D. Martynov | T. Massinger | F. Matichard | N. Mavalvala | D. McClelland | S. McCormick | J. McIver | G. Mendell | R. Mittleman | G. Moreno | C. Mow-Lowry | A. Mullavey | L. Nuttall | J. Oberling | R. Oram | H. Overmier | J. Palamos | W. Parker | A. Pele | H. Radkins | K. Riles | J. Rollins | T. Sadecki | E. Sanchez | R. Savage | R. Schnabel | R. Schofield | D. Sellers | D. Sigg | J. Smith | B. Sorazu | L. Sun | M. Thomas | K. Thorne | G. Traylor | M. Tse | A. Urban | G. Vajente | G. Valdes | R. Abbott | C. Adams | R. Adhikari | A. Ananyeva | S. Appert | K. Arai | J. Areeda | S. Aston | S. Ballmer | S. Banagiri | L. Barsotti | J. Betzwieser | G. Billingsley | S. Biscans | C. Blair | R. Blair | N. Bode | P. Booker | R. Bork | A. Bramley | A. Brooks | D. Brown | A. Buikema | C. Cahillane | K. Cannon | X. Chen | A. Ciobanu | F. Clara | K. R. Corley | S. Countryman | L. Datrier | D. Davis | K. Dooley | J. Driggers | P. Dupej | S. Dwyer | A. Effler | T. Evans | J. Feicht | Á. Fernández-Galiana | P. Fritschel | P. Fulda | J. Giaime | K. Giardina | P. Godwin | E. Goetz | G. González | S. Gras | R. Gray | E. Gustafson | R. Gustafson | J. Hanks | T. Hardwick | M. Heintze | N. Holland | S. Kandhasamy | S. Karki | M. Kasprzack | K. Kawabe | B. Lane | M. Laxen | Y. Lecoeuche | J. Liu | R. Macas | L. McCuller | E. Merilh | T. Mistry | T. Nelson | D. Ottaway | C. Perez | M. Pirello | K. Ramirez | J. Richardson | C. Romel | M. Ross | L. Sanchez | T. Shaffer | B. Slagmolen | A. Spencer | K. Strain | K. Toland | D. Vander-Hyde | P. Veitch | K. Venkateswara | Gautam Venugopalan | A. Viets | T. Vo | C. Vorvick | M. Wade | R. Ward | J. Warner | B. Weaver | R. Weiss | C. Whittle | B. Willke | C. Wipf | L. Xiao | H. Yamamoto | Hang Yu | Haocun Yu | L. Zhang | M. Zucker | J. Zweizig | S. M'arka | B. Berger | Z. M'arka | J. Romie | C. Torrie | Y. Asali | A. Baer | M. Ball | D. Bhattacharjee | R. Hasskew | A. Helmling-Cornell | J. Jones | Rahul Kumar | K. Merfeld | F. Meylahn | S. Mozzon | C. Osthelder | E. Payne | D. Schaetzl | E. Schwartz | S. Soni | R. McCarthy | C. Austin | S. Cooper | D. Coyne | V. Frolov | M. Fyffe | C. Gray | J. Hanson | J. Kissel | K. Mason | P. Nguyen | N. Robertson | K. Ryan | P. Thomas | T. Etzel | M. Evans | J. Leviton | C. D. Fronzo | A. Green | D. Barker | J. Bartlett | T. McRae | R. Penhorwood | K. Corley | L. Zhang | P. Thomas | T. Hardwick | K. Kawabe | L. Zhang | M. Landry | B. Lantz | K. Mason | J. R. Smith | P. Covas

[1]  P. K. Panda,et al.  GW190521: A Binary Black Hole Merger with a Total Mass of 150  M_{⊙}. , 2020, Physical review letters.

[2]  N. Leroy,et al.  Omicron: A tool to characterize transient noise in gravitational-wave detectors , 2020, SoftwareX.

[3]  B. Swinkels,et al.  Scattered light noise characterisation at the Virgo interferometer with tvf-EMD adaptive algorithm , 2020, Classical and Quantum Gravity.

[4]  B. A. Boom,et al.  A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals , 2019, Classical and Quantum Gravity.

[5]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[6]  J. Kissel,et al.  Blip glitches in Advanced LIGO data , 2019, Classical and Quantum Gravity.

[7]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[8]  Aggelos K. Katsaggelos,et al.  Machine learning for Gravity Spy: Glitch classification and dataset , 2018, Inf. Sci..

[9]  L. Nuttall Characterizing transient noise in the LIGO detectors , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Academisch Proefschrift,et al.  Turn up the bass!: Low-frequency performance improvement of seismic attenuation systems and vibration sensors for next generation gravitational wave detectors , 2018 .

[11]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[12]  G. Valdes,et al.  A Hilbert–Huang transform method for scattering identification in LIGO , 2017 .

[13]  Duncan A. Brown,et al.  Reconstructing the calibrated strain signal in the Advanced LIGO detectors , 2017, 1710.09973.

[14]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[15]  B. A. Boom,et al.  On the Progenitor of Binary Neutron Star Merger GW170817 , 2017, 1710.05838.

[16]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[17]  L. Pinard,et al.  Mirrors used in the LIGO interferometers for first detection of gravitational waves. , 2017, Applied optics.

[18]  A. Katsaggelos,et al.  Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science , 2016, Classical and quantum gravity.

[19]  Y. Wang,et al.  Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914 , 2016, 1602.03845.

[20]  R. Bork,et al.  Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy , 2016, 1604.00439.

[21]  The LIGO Scientific Collaboration,et al.  Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 , 2016, 1602.03844.

[22]  The LIGO Scientific Collaboration,et al.  GW150914: The Advanced LIGO Detectors in the Era of First Discoveries , 2016, 1602.03838.

[23]  T. Massinger Detector characterization for advanced LIGO , 2016 .

[24]  L. Nuttall,et al.  GEO 600 and the GEO-HF upgrade program: successes and challenges , 2015, 1510.00317.

[25]  P. Sarin,et al.  Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance , 2015, 1502.06300.

[26]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[27]  J. McIver The impact of terrestrial noise on the detectability and reconstruction of gravitational wave signals from core-collapse supernovae , 2015 .

[28]  R. Schofield,et al.  Environmental influences on the LIGO gravitational wave detectors during the 6th science run , 2014, 1409.5160.

[29]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[30]  G. Vajente,et al.  Displacement noise from back scattering and specular reflection of input optics in advanced gravitational wave detectors. , 2013, Optics express.

[31]  T. Hayler,et al.  Update on quadruple suspension design for Advanced LIGO , 2012 .

[32]  Peter Fritschel,et al.  Impact of upconverted scattered light on advanced interferometric gravitational wave detectors. , 2012, Optics express.

[33]  Vincent Loriette,et al.  Noise from scattered light in Virgo's second science run data , 2010 .

[34]  Lisa Barsotti,et al.  Alignment sensing and control in advanced LIGO , 2010 .

[35]  E. Katsavounidis,et al.  Multiresolution techniques for the detection of gravitational-wave bursts , 2004, gr-qc/0412119.

[36]  Robert K. Cessaro,et al.  Sources of primary and secondary microseisms , 1994, Bulletin of the Seismological Society of America.