Potenzial der Anwendung von VR-Interaktionstechniken im Usability-Testing

Methoden der Virtual Reality (VR) Technologie haben Einzug in die Produktentwicklung gefunden und werden dort vorrangig in den fruhen Phasen eingesetzt. Uns interessiert hier die Frage, inwieweit VR fur das Usability-Testing genutzt werden kann. Ziel des Artikels ist es, fur diese Nutzung Potentiale, Probleme und Alternativen aufzuzeigen. Wir gehen dabei auf virtuelle Prototypen ein und betrachten den Bereich Ergonomie insbesondere im Hinblick auf Interaktionsaspekte. Wir argumentieren, dass neue VR-Interaktionstechniken, bei denen der Benutzer direkt mit physischen Prototypen statt durch Interaktionsgerate interagiert, aussagekraftigere Testergebnisse versprechen.

[1]  Robert J. K. Jacob,et al.  What you look at is what you get: eye movement-based interaction techniques , 1990, CHI '90.

[2]  Mark Weiser,et al.  Some computer science issues in ubiquitous computing , 1993, CACM.

[3]  Uli Kutter,et al.  Literatur. , 1941, Subjekt.

[4]  William Buxton,et al.  Graspable user interfaces , 1996 .

[5]  Philippe Coiffet,et al.  Virtual Reality Technology , 2003, Presence: Teleoperators & Virtual Environments.

[6]  Johann Habakuk Israel,et al.  A 6-DOF user interface for grasping in VR-based computer aided styling and design , 2005, VRST '05.

[7]  Alain Roger,et al.  Methoden für das Industriedesign in Virtueller Realität , 2005 .

[8]  P A Hancock,et al.  The perception of spatial layout in real and virtual worlds. , 1997, Ergonomics.

[9]  P. Milgram,et al.  A Taxonomy of Mixed Reality Visual Displays , 1994 .

[10]  Ken Hinckley,et al.  Three-dimensional user interface for neurosurgical visualization , 1994, Medical Imaging.

[11]  Ronald Azuma,et al.  A Survey of Augmented Reality , 1997, Presence: Teleoperators & Virtual Environments.

[12]  Olaf Oehme,et al.  Augmented Reality (AR) for Assembly Processes Design and Experimental Evaluation , 2003, Int. J. Hum. Comput. Interact..

[13]  Ehud Sharlin,et al.  On tangible user interfaces, humans and spatiality , 2004, Personal and Ubiquitous Computing.

[14]  Hiroshi Ishii,et al.  Tangible bits: towards seamless interfaces between people, bits and atoms , 1997, CHI.

[15]  Hiroshi Ishii,et al.  Emerging frameworks for tangible user interfaces , 2000, IBM Syst. J..

[16]  Jakob Nielsen,et al.  Noncommand user interfaces , 1993, CACM.

[17]  Ivan Poupyrev,et al.  3D User Interfaces: Theory and Practice , 2004 .

[18]  Don B. Chaffin,et al.  Toward memory-based human motion simulation: development and validation of a motion modification algorithm , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[19]  Paul Dourish,et al.  Where the action is , 2001 .

[20]  André Stork,et al.  Effiziente 3D-Interaktions- und Visualisierungstechniken für Benutzer-zentrierte Modellierungssysteme , 2001 .

[21]  Stefan Dreher Flexible Integration von Rapid Prototyping Prozessketten in die Produktenstehung , 2005 .

[22]  John R. Bartels,et al.  Verification and Validation of Roof Bolter Simulation Models for Studying Events between a Machine and its Operator , 2001 .

[23]  Martyn Evans,et al.  RAPID DEVELOPMENT OF INFORMATION APPLIANCES: FUTURE APPROACHES FOR DESIGNERS , 2006 .

[24]  Don B Chaffin,et al.  Primary prevention of low back pain through the application of biomechanics in manual materials handling tasks. , 2005, Giornale italiano di medicina del lavoro ed ergonomia.

[25]  Alain Bernard,et al.  A fuzzy approach for definition of dangerous zone in industrial systems , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[26]  Frank Biocca,et al.  Comparative effectiveness of augmented reality in object assembly , 2003, CHI '03.

[27]  Wolfgang Broll,et al.  An infrastructure for realizing custom-tailored augmented reality user interfaces , 2005, IEEE Transactions on Visualization and Computer Graphics.