Structural basis of Streptococcus pyogenes immunity to its NAD+ glycohydrolase toxin.

[1]  Joydeep Ghosh,et al.  Characterization of Streptococcus pyogenes beta-NAD+ glycohydrolase: re-evaluation of enzymatic properties associated with pathogenesis. , 2010, The Journal of biological chemistry.

[2]  H. Tsuge,et al.  Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens ι-toxin , 2008, Proceedings of the National Academy of Sciences.

[3]  I. Tatsuno,et al.  Characterization of the NAD-glycohydrolase in streptococcal strains. , 2007, Microbiology.

[4]  B. Finlay,et al.  Host–microbe interactions , 2007, Nature.

[5]  Eric Blanc,et al.  Automated structure solution with autoSHARP. , 2007, Methods in molecular biology.

[6]  Joydeep Ghosh,et al.  Specificity of Streptococcus pyogenes NAD+ glycohydrolase in cytolysin‐mediated translocation , 2006, Molecular microbiology.

[7]  K. Acharya,et al.  A family of killer toxins , 2006, The FEBS journal.

[8]  Y. Yokota,et al.  Genetic and Biochemical Properties of Streptococcal NAD-glycohydrolase Inhibitor* , 2006, Journal of Biological Chemistry.

[9]  M. Wessels,et al.  Enhancement of Streptolysin O Activity and Intrinsic Cytotoxic Effects of the Group A Streptococcal Toxin, NAD-Glycohydrolase* , 2006, Journal of Biological Chemistry.

[10]  J. Pinkner,et al.  A Novel Endogenous Inhibitor of the Secreted Streptococcal NAD-Glycohydrolase , 2005, PLoS Pathogens.

[11]  A. Schwan,et al.  Exotoxin A–eEF2 complex structure indicates ADP ribosylation by ribosome mimicry , 2005, Nature.

[12]  J. Potempa,et al.  Fighting an enemy within: cytoplasmic inhibitors of bacterial cysteine proteases , 2005, Molecular microbiology.

[13]  K. Gerdes,et al.  Prokaryotic toxin–antitoxin stress response loci , 2005, Nature Reviews Microbiology.

[14]  Y. Yokota,et al.  Molecular characterization of NADase-streptolysin O operon of hemolytic streptococci. , 2005, Biochimica et biophysica acta.

[15]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .

[16]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[17]  M. Caparon,et al.  Specificity of streptolysin O in cytolysin‐mediated translocation , 2004, Molecular microbiology.

[18]  D. Szebenyi,et al.  ADP-ribosyl cyclase; crystal structures reveal a covalent intermediate. , 2004, Structure.

[19]  Finbarr Hayes,et al.  Toxins-Antitoxins: Plasmid Maintenance, Programmed Cell Death, and Cell Cycle Arrest , 2003, Science.

[20]  Naohiro Matsugaki,et al.  Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport , 2003, Nature Structural Biology.

[21]  Xiangyuan He,et al.  Crystal structure of GGA2 VHS domain and its implication in plasticity in the ligand binding pocket , 2003, FEBS letters.

[22]  Burkhard Rost,et al.  The PredictProtein server , 2003, Nucleic Acids Res..

[23]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[24]  P. Salo,et al.  ADP-ribosylation factor (ARF) interaction is not sufficient for yeast GGA protein function or localization. , 2002, Molecular biology of the cell.

[25]  Jérôme Gouzy,et al.  ProDom: Automated Clustering of Homologous Domains , 2002, Briefings Bioinform..

[26]  M. Wessels,et al.  NAD+‐glycohydrolase acts as an intracellular toxin to enhance the extracellular survival of group A streptococci , 2002, Molecular microbiology.

[27]  Thomas Earnest,et al.  Structural basis for recognition of acidic-cluster dileucine sequence by GGA1 , 2002, Nature.

[28]  J. Tainer,et al.  The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. , 2002, International journal of medical microbiology : IJMM.

[29]  J. Bonifacino,et al.  Structural Requirements for Function of Yeast GGAs in Vacuolar Protein Sorting, α-Factor Maturation, and Interactions with Clathrin , 2001, Molecular and Cellular Biology.

[30]  N. Ruiz,et al.  Cytolysin-Mediated Translocation (CMT) A Functional Equivalent of Type III Secretion in Gram-Positive Bacteria , 2001, Cell.

[31]  J. Tainer,et al.  Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. , 2001, Journal of molecular biology.

[32]  D. Stevens,et al.  Molecular epidemiology of nga and NAD glycohydrolase/ADP-ribosyltransferase activity among Streptococcus pyogenes causing streptococcal toxic shock syndrome. , 2000, The Journal of infectious diseases.

[33]  M. Cunningham,et al.  Pathogenesis of group A streptococcal infections. , 2000, Clinical microbiology reviews.

[34]  J. Pflugrath,et al.  The finer things in X-ray diffraction data collection. , 1999, Acta crystallographica. Section D, Biological crystallography.

[35]  I. Vetter,et al.  The crystal structure of rna1p: a new fold for a GTPase-activating protein. , 1999, Molecular cell.

[36]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[37]  K Cowtan,et al.  Miscellaneous algorithms for density modification. , 1998, Acta crystallographica. Section D, Biological crystallography.

[38]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[39]  C Sander,et al.  Mapping the Protein Universe , 1996, Science.

[40]  R. Rappuoli,et al.  Three conserved consensus sequences identify the NAD‐binding site of ADP‐ribosylating enzymes, expressed by eukaryotes, bacteria and T‐even bacteriophages , 1996, Molecular microbiology.

[41]  S. Nakamura,et al.  NAD(+)-glycohydrolase from Streptococcus pyogenes shows cyclic ADP-ribose forming activity. , 1995, FEMS microbiology letters.

[42]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[43]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[44]  W. B. Davis Identification of a nicotinamide adenine dinucleotide glycohydrolase and an associated inhibitor in isoniazid-susceptible and -resistant Mycobacterium phlei , 1980, Antimicrobial Agents and Chemotherapy.

[45]  K. E. Everse,et al.  The pyridine nucleosidases from Bacillus subtilis and Neurospora crassa. Isolation and structural properties. , 1975, Archives of biochemistry and biophysics.

[46]  N. Kaplan,et al.  The pyridine nucleosidase from Bacillus subtilis. Kinetic properties and enzyme-inhibitor interactions. , 1975, Archives of biochemistry and biophysics.

[47]  S. Shany,et al.  Purification and properties of streptococcal nicotinamide adenine dinucleotide glycohydrolase , 1975, Journal of bacteriology.

[48]  I. Mather,et al.  A heat-stable nicotinamide adenine dinucleotidase from Pseudomonas fluorescens. , 1969, Journal of general microbiology.