Parametric surface denoising

Three dimensional (3D) surfaces can be sampled parametrically in the form of range image data. Smoothing/denoising of such raw data is usually accomplished by adapting techniques developed for intensity image processing, since both range and intensity images comprise parametrically sampled geometry and appearance measurements, respectively. We present a transform-based algorithm for surface denoising, motivated by our previous work on intensity image denoising, which utilizes a non-separable Parseval frame and an ensemble thresholding scheme. The frame is constructed from separable (tensor) products of a piecewise linear spline tight frame and incorporates the weighted average operator and the Sobel operators in directions that are integer multiples of 45°. We compare the performance of this algorithm with other transform-based methods from the recent literature. Our results indicate that such transform methods are suited to the task of smoothing range images.

[1]  Mark Meyer,et al.  Anisotropic Feature-Preserving Denoising of Height Fields and Bivariate Data , 2000, Graphics Interface.

[2]  Martin Vetterli,et al.  Spatially adaptive wavelet thresholding with context modeling for image denoising , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[3]  Levent Sendur,et al.  Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency , 2002, IEEE Trans. Signal Process..

[4]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[5]  Guoliang Fan,et al.  Image denoising using a local contextual hidden Markov model in the wavelet domain , 2001, IEEE Signal Processing Letters.

[6]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[7]  I. Selesnick Smooth Wavelet Tight Frames with Zero Moments , 2001 .

[8]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[9]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[10]  Hans-Peter Seidel,et al.  Mesh Smoothing by Adaptive and Anisotropic Gaussian Filter Applied to Mesh Normals , 2002, VMV.

[11]  Ioannis A. Kakadiaris,et al.  Nonseparable Radial Frame Multiresolution Analysis in Multidimensions , 2003 .

[12]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[13]  Olli Jokinen,et al.  Intrinsic Filtering of Range Images Using a Physically Based Noise Model , 2002 .

[14]  Michael T. Orchard,et al.  Spatially adaptive image denoising under overcomplete expansion , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[15]  B. Han,et al.  TIGHT WAVELET FRAMES GENERATED BY THREE SYMMETRIC B-SPLINE FUNCTIONS WITH HIGH VANISHING MOMENTS , 2002 .

[16]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[17]  Aria Nosratinia,et al.  Modeling the autocorrelation of wavelet coefficients for image denoising , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[18]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[19]  Justin K. Romberg,et al.  Bayesian tree-structured image modeling using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..

[20]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[21]  Danny Barash,et al.  A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  S. Mallat A wavelet tour of signal processing , 1998 .

[23]  Philippe Saint-Marc,et al.  Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[25]  Qingtang Jiang,et al.  Parameterizations of Masks for Tight Affine Frames with Two Symmetric/Antisymmetric Generators , 2003, Adv. Comput. Math..

[26]  Edward H. Adelson,et al.  Noise removal via Bayesian wavelet coring , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[27]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[28]  Aleksandra Pizurica,et al.  A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising , 2002, IEEE Trans. Image Process..

[29]  Kannan Ramchandran,et al.  Low-complexity image denoising based on statistical modeling of wavelet coefficients , 1999, IEEE Signal Processing Letters.

[30]  Petukhov,et al.  Constructive Approximation Symmetric Framelets , 2003 .

[31]  A. Wallace,et al.  Outlier removal and discontinuity preserving smoothing of range data , 1996 .

[32]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[33]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[34]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[35]  John J. Benedetto,et al.  Wavelet Frames: Multiresolution Analysis and Extension Principles , 2001 .

[36]  I. Selesnick,et al.  Bivariate shrinkage with local variance estimation , 2002, IEEE Signal Processing Letters.

[37]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[38]  Ioannis A. Kakadiaris,et al.  Image denoising using a tight frame , 2005, IEEE Transactions on Image Processing.

[39]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[40]  Eero P. Simoncelli Bayesian Denoising of Visual Images in the Wavelet Domain , 1999 .

[41]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .