Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes

The spontaneous emission characteristics of green- and red-emitting InGaN quantum wells (QWs) on ternary InGaN substrate are analyzed, and the radiative recombination rates for the QWs grown on ternary substrate were compared with those of InGaN QWs on GaN templates. For green- and red-emitting InGaN QWs on In0.15Ga0.85N substrate, the spontaneous emission rates were found as ∼2.5-3.2 times of the conventional approach. The enhancement in spontaneous emission rate can be achieved by employing higher In-content InGaN ternary substrate, which is also accompanied by a reduction in emission wavelength blue-shift from the carrier screening effect. The use of InGaN substrate is expected to result in the ability for growing InGaN QWs with enhanced spontaneous emission rates, as well as reduced compressive strain, applicable for green- and red-emitting light-emitting diodes.

[1]  Yik-Khoon Ee,et al.  Self-Consistent Analysis of Strain-Compensated InGaN–AlGaN Quantum Wells for Lasers and Light-Emitting Diodes , 2009, IEEE Journal of Quantum Electronics.

[2]  Hisashi Yamada,et al.  Continuous-wave Operation of AlGaN-cladding-free Nonpolar m-Plane InGaN/GaN Laser Diodes , 2007 .

[3]  Seoung-Hwan Park,et al.  Dip-shaped InGaN/GaN quantum-well light-emitting diodes with high efficiency , 2009 .

[4]  Umesh K. Mishra,et al.  High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .

[5]  Y. Shimogaki,et al.  Selective Area Metal–Organic Vapor Phase Epitaxy of Nitride Semiconductors for Multicolor Emission , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Taeil Jung,et al.  Novel Epitaxial Nanostructures for the Improvement of InGaN LEDs Efficiency , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  Shun Lien Chuang,et al.  A band-structure model of strained quantum-well wurtzite semiconductors , 1997 .

[8]  E. Fred Schubert,et al.  Origin of efficiency droop in GaN-based light-emitting diodes , 2007 .

[9]  Shun Lien Chuang,et al.  Comparison of zinc-blende and wurtzite GaN semiconductors with spontaneous polarization and piezoelectric field effects , 2000 .

[10]  Masaya Shimizu,et al.  MOVPE growth of thick homogeneous InGaN directly on sapphire substrate using AlN buffer layer , 1997 .

[11]  Yik-Khoon Ee,et al.  Light Extraction Efficiency and Radiation Patterns of III-Nitride Light-Emitting Diodes With Colloidal Microlens Arrays With Various Aspect Ratios , 2011, IEEE Photonics Journal.

[12]  Seoung-Hwan Park,et al.  Optical Properties of Staggered InGaN/InGaN/GaN Quantum-Well Structures with Ga- and N-Faces , 2011 .

[13]  R. Dupuis,et al.  Design Strategies for InGaN-Based Green Lasers , 2010, IEEE Journal of Quantum Electronics.

[14]  Yen-Kuang Kuo,et al.  Improvement in output power of a 460 nm InGaN light-emitting diode using staggered quantum well , 2010 .

[15]  Nelson Tansu,et al.  Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile , 2009 .

[16]  Nelson Tansu,et al.  Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. , 2011, Optics express.

[17]  Shun Lien Chuang,et al.  Optical gain of strained wurtzite GaN quantum-well lasers , 1996 .

[18]  Hongxing Jiang,et al.  Erbium-Doped AlInGaN Alloys as High-Temperature Thermoelectric Materials , 2011 .

[19]  E. Fred Schubert,et al.  Strong light extraction enhancement in GaInN light-emitting diodes by using self-organized nanoscale patterning of p-type GaN , 2011 .

[20]  A. A. Allerman,et al.  Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence , 2002 .

[21]  N. Tansu,et al.  High-temperature characteristics of Seebeck coefficients for AlInN alloys grown by metalorganic vapor phase epitaxy , 2011 .

[22]  Seoung-Hwan Park,et al.  High-efficiency staggered 530 nm InGaN/InGaN/GaN quantum-well light-emitting diodes , 2009 .

[23]  Jonathan J. Wierer,et al.  III -nitride photonic-crystal light-emitting diodes with high extraction efficiency , 2009 .

[24]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[25]  R. Dupuis,et al.  Control of Quantum-Confined Stark Effect in InGaN-Based Quantum Wells , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  Nelson Tansu,et al.  Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography , 2011, Nanoscale research letters.

[27]  Nelson Tansu,et al.  Analysis of InGaN-delta-InN quantum wells for light-emitting diodes , 2010 .

[28]  P. Blood,et al.  Time Evolution of the Screening of Piezoelectric Fields in InGaN Quantum Wells , 2005, IEEE Journal of Quantum Electronics.

[29]  Michael Kneissl,et al.  Continuous-wave operation of ultraviolet InGaN/InAlGaN multiple-quantum-well laser diodes , 2003 .

[30]  Seoung-Hwan Park,et al.  Spontaneous emission rate of green strain‐compensated InGaN/InGaN LEDs using InGaN substrate , 2011 .

[31]  S. G. Bishop,et al.  GaN epitaxial lateral overgrowth and optical characterization , 1998 .

[32]  Elias Towe,et al.  On ternary nitride substrates for visible semiconductor light-emitters , 2010 .

[33]  M.H. Crawford,et al.  LEDs for Solid-State Lighting: Performance Challenges and Recent Advances , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  James S. Speck,et al.  Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes , 2008 .