Asymptotic analysis of the Green–Kubo formula

A detailed study of various distinguished limits of the Green-Kubo formula for the self-diffusion coefficient is presented in this paper. First, an alternative representation of the Green-Kubo formula in terms of the solution of a Poisson equation is derived when the microscopic dynamics is Markovian. Then the techniques developed in Golden & Papanicolaou (1983, Bounds for effective parameters of heterogeneous media by analytic continuation. Commun. Math. Phys., 90, 473-491) and Avellaneda & Majda (1991, An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows. Commun. Math. Phys., 138, 339-391) are used to obtain a Stieltjes integral representation formula for the symmetric and antisymmetric parts of the diffusion tensor. The effect of irreversible microscopic dynamics on the diffusion coefficient is analysed and various asymptotic limits of physical interest are studied. Several examples are presented that confirm the findings of our theory.

[1]  Andrew J. Majda,et al.  Mathematical models with exact renormalization for turbulent transport , 1990 .

[2]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[3]  Avellaneda,et al.  Stieltjes integral representation of effective diffusivities in time-dependent flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Homer F. Walker,et al.  Asymptotics of solute dispersion in periodic porous media , 1989 .

[5]  Thorsten Pöschel,et al.  Self-diffusion in granular gases: Green-Kubo versus Chapman-Enskog. , 2005, Chaos.

[6]  Da-quan Jiang,et al.  The Green–Kubo formula and power spectrum of reversible Markov processes , 2003 .

[7]  T. Petrosky Transport Theory and Collective Modes II: Long-Time Tail and Green-Kubo Formalism , 1999 .

[8]  D. Dürr,et al.  On rigorous Hydrodynamics, Self-diffusion and the Green-Kubo formulae , 1990 .

[9]  Koji Kikuchi,et al.  On Markov process generated by pseudodifferential operator of variable order , 1997 .

[10]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[11]  T. Petrosky Transport Theory and Collective Modes. I. The Case of Moderately Dense Gases , 1999 .

[12]  Radu Balescu,et al.  Statistical dynamics: matter out of equilibrium , 1997 .

[13]  Richard S. Ellis Chapman-enskog-hilbert expansion for a markovian model of the boltzmann equation† , 1973 .

[14]  H. Qian,et al.  Thermodynamics of the General Diffusion Process: Time-Reversibility and Entropy Production , 2002 .

[15]  George Papanicolaou,et al.  Bounds for effective parameters of heterogeneous media by analytic continuation , 1983 .

[16]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[17]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[18]  Andrew J. Majda,et al.  An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows , 1991 .

[19]  P. Constantin,et al.  Diffusion and mixing in fluid flow , 2005 .

[20]  Andrew J. Majda,et al.  The Effect of Mean Flows on Enhanced Diffusivity in Transport by Incompressible Periodic Velocity Fields , 1993 .

[21]  The complete Chapman-Enskog procedure for the Fokker-Planck equation , 1977 .

[22]  M. Qian,et al.  The Green–Kubo formula, autocorrelation function and fluctuation spectrum for finite Markov chains with continuous time , 2006 .

[23]  Martin Hairer,et al.  From Ballistic to Diffusive Behavior in Periodic Potentials , 2007, 0707.2352.

[24]  R. Balescu Equilibrium and Nonequilibrium Statistical Mechanics , 1991 .

[25]  Brilliantov,et al.  Self-diffusion in granular gases , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  A. Lunardi On the Ornstein-Uhlenbeck operator in ² spaces with respect to invariant measures , 1997 .

[27]  John F. Brady,et al.  The symmetry properties of the effective diffusivity tensor in anisotropic porous media , 1987 .

[28]  M. Freidlin,et al.  On random perturbations of Hamiltonian systems with many degrees of freedom , 2001 .

[29]  R. Kubo Statistical Physics II: Nonequilibrium Statistical Mechanics , 2003 .

[30]  G. A. Pavliotis,et al.  Asymptotic analysis for the generalized Langevin equation , 2010, 1003.4203.

[31]  R. Kupferman Fractional Kinetics in Kac–Zwanzig Heat Bath Models , 2004 .

[32]  P. Resibois,et al.  On the Connection between the Kinetic Approach and the Correlation‐Function Method for Thermal Transport Coefficients , 1964 .

[33]  A. Majda,et al.  SIMPLIFIED MODELS FOR TURBULENT DIFFUSION : THEORY, NUMERICAL MODELLING, AND PHYSICAL PHENOMENA , 1999 .

[34]  M. Toda,et al.  In: Statistical physics II , 1985 .

[35]  Pierre Resibois,et al.  Classical kinetic theory of fluids , 1977 .