Pressure-induced phase transitions of AX2-type iron pnictides: an ab initio study

An investigation into the high-pressure behavior of AX2-type iron pnictides was conducted using first-principles calculations based on density functional theory within the generalized gradient approximation. Our results demonstrate that a phase transition from the marcasite to the CuAl2 occurs at 108 GPa for FeP2, at 92 GPa for FeAs2, and at 38 GPa for FeSb2, accompanying a semiconductor-to-metal crossover. A linear relationship between bulk moduli and the inverse specific volume is proposed to be B0 = 17 498/V0−45.9 GPa for the marcasite-type phase and B0 = 31 798/V0−67.5 GPa for the CuAl2-type phase. According to the observed structural evolutions, we claim that the regular marcasite transforms to the CuAl2-type phase and the anomalous marcasite transforms to the pyrite-type phase at high pressures.

[1]  L. Dubrovinsky,et al.  Structural study of FeP2 at high pressure , 2009 .

[2]  F. Hsu,et al.  Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.

[3]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[4]  M. Klementová,et al.  Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic , 2007 .

[5]  Georg K. H. Madsen,et al.  Experimental and theoretical investigations of strongly correlated FeSb 2 − x Sn x , 2006 .

[6]  M. R. Philpott,et al.  Semiconductor–metal transition of pyrite FeS2 under high pressure by full-potential linearized-augmented plane wave calculations , 2006 .

[7]  M. Armbrüster,et al.  CuAl2 revisited: Composition, crystal structure, chemical bonding, compressibility and Raman spectroscopy , 2006 .

[8]  Xiaojun Wu,et al.  Theoretical calculations of the high-pressure phases of ZnF2 and CdF2 , 2006 .

[9]  V. Anisimov,et al.  The semiconductor-to-ferromagnetic-metal transition in FeSb2 , 2006, cond-mat/0604020.

[10]  Y. Lee,et al.  Kondo insulator description of spin state transition in FeSb2 , 2005, cond-mat/0504458.

[11]  S. Ono,et al.  Phase transition between theCaCl2-type andα−PbO2-type structures of germanium dioxide , 2003 .

[12]  N. Ross,et al.  Compressibility of CaZrO3 perovskite: Comparison with Ca-oxide perovskites , 2003 .

[13]  R. Ahuja,et al.  Stabilization of potential superhard RuO 2 phases: A theoretical study , 2002 .

[14]  Jong-Woo Kim,et al.  Anisotropy and large magnetoresistance in the narrow-gap semiconductor FeSb2 , 2002, cond-mat/0206190.

[15]  H. Takizawa,et al.  A new ferromagnetic polymorph of CrSb2 synthesized under high pressure , 1999 .

[16]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[17]  Rice,et al.  Singlet semiconductor to ferromagnetic metal transition in FeSi. , 1996, Physical review letters.

[18]  A. Kjekshus,et al.  Structural Transformations in CotNi(1-t)As2, NiAs(2-x)Sx, NiAs(2-x)Sex and CoAs(1-x)Se(1+x). , 1979 .

[19]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[20]  J. Goodenough Energy bands in TX2 compounds with pyrite, marcasite, and arsenopyrite structures , 1972 .

[21]  A. Wold,et al.  Preparation and properties of FeAs2 and FeSb2 , 1972 .

[22]  E. E. Havinga,et al.  Compounds and pseudo-binary alloys with the CuAl2(C16)-type structure I. Preparation and X-ray results , 1972 .

[23]  S. Rundqvist,et al.  Magnetic and Electric Properties of FeP2 Single Crystals , 1971 .

[24]  H. S. Young,et al.  High-pressure synthesis of pyrite-type nickel diphosphide and nickel diarsenide , 1968 .

[25]  O. Anderson,et al.  The bulk modulus-volume relationship for oxide compounds and related geophysical problems , 1965 .

[26]  E. Mooser,et al.  Semiconductivity in pyrite, marcasite and arsenopyrite phases , 1964 .