High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes

Conversion of low-grade waste heat into electricity is an important energy harvesting strategy. However, abundant heat from these low-grade thermal streams cannot be harvested readily because of the absence of efficient, inexpensive devices that can convert the waste heat into electricity. Here we fabricate carbon nanotube aerogel-based thermo-electrochemical cells, which are potentially low-cost and relatively high-efficiency materials for this application. When normalized to the cell cross-sectional area, a maximum power output of 6.6 W m−2 is obtained for a 51 °C inter-electrode temperature difference, with a Carnot-relative efficiency of 3.95%. The importance of electrode purity, engineered porosity and catalytic surfaces in enhancing the thermocell performance is demonstrated.

[1]  Chang Liu,et al.  Purification of single-wall carbon nanotubes by electrochemical oxidation , 2004 .

[2]  Riichiro Saito,et al.  Raman spectroscopy on isolated single wall carbon nanotubes , 2002 .

[3]  Su-Moon Park,et al.  Electrochemical impedance spectroscopy for better electrochemical measurements. , 2003, Analytical chemistry.

[4]  V. Varadan,et al.  Functionalized carbon nanotubes in platinum decoration , 2006 .

[5]  Peter Hall,et al.  Energy-storage technologies and electricity generation , 2008 .

[6]  Richard Czerw,et al.  Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. , 2012, Nano letters.

[7]  Y. Gogotsi,et al.  Purification of carbon nanotubes by dynamic oxidation in air , 2009 .

[8]  Y. V. Kuzminskii,et al.  Thermoelectric effects in electrochemical systems. Nonconventional thermogalvanic cells , 1994 .

[9]  M. Pacios,et al.  Electrochemical behavior of rigid carbon nanotube composite electrodes , 2008 .

[10]  M. Armstrong,et al.  Evaluating the performance of nanostructured materials as lithium-ion battery electrodes , 2013, Nano Research.

[11]  Satish Kumar,et al.  Design and optimization of thermo-electrochemical cells , 2014, Journal of Applied Electrochemistry.

[12]  Zhifeng Ren,et al.  Enhancement of Thermoelectric Figure‐of‐Merit by a Bulk Nanostructuring Approach , 2010 .

[13]  E. McAdams,et al.  Fundamental Electrochemical Properties of Carbon Nanotube Electrodes , 2005 .

[14]  Su-Moon Park,et al.  Peer Reviewed: Electrochemical Impedance Spectroscopy for Better Electrochemical Measurements , 2003 .

[15]  J. Ferraris,et al.  Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. , 2010, Nano letters.

[16]  T. I. Quickenden,et al.  A Review of Power Generation in Aqueous Thermogalvanic Cells , 1995 .

[17]  S. Kjelstrup,et al.  Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler-Volmer and Nernst Equations , 2003 .

[18]  Pulickel M. Ajayan,et al.  Fast Electron Transfer Kinetics on Multiwalled Carbon Nanotube Microbundle Electrodes , 2001 .

[19]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[20]  Na Li,et al.  Carbon Nanotube – Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications , 2013, Advanced materials.

[21]  Tae June Kang,et al.  Flexible thermocells for utilization of body heat , 2014, Nano Research.

[22]  Pablo Cañizares,et al.  Measurement of Mass-Transfer Coefficients by an Electrochemical Technique , 2006 .

[23]  C. B. Vining An inconvenient truth about thermoelectrics. , 2009, Nature materials.

[24]  A. M. Rao,et al.  Large-scale purification of single-wall carbon nanotubes: process, product, and characterization , 1998 .

[25]  Dan Zhao,et al.  Waste thermal energy harvesting from a convection-driven Rijke–Zhao thermo-acoustic-piezo system , 2013 .

[26]  Carter S. Haines,et al.  Electrical Power From Nanotube and Graphene Electrochemical Thermal Energy Harvesters , 2012 .

[27]  T. Kang,et al.  Enhancement of heating performance of carbon nanotube sheet with granular metal. , 2012, ACS applied materials & interfaces.

[28]  G. Wallace,et al.  Novel carbon materials for thermal energy harvesting , 2012, Journal of Thermal Analysis and Calorimetry.

[29]  Dong Jae Bae,et al.  High-Yield Purification Process of Singlewalled Carbon Nanotubes , 2001 .

[30]  A. Wragg,et al.  Local mass transfer and current distribution in baffled and unbaffled parallel plate electrochemical reactors , 1997 .

[31]  A. J. deBethune,et al.  The Temperature Coefficients of Electrode Potentials The Isothermal and Thermal Coefficients—The Standard Ionic Entropy of Electrochemical Transport of the Hydrogen Ion , 1959 .

[32]  J. Randles Kinetics of rapid electrode reactions , 1947 .

[33]  K. N. Seetharamu,et al.  Convection Heat Transfer , 2005 .

[34]  E. D. Eastman THEORY OF THE SORET EFFECT , 1928 .

[35]  E. D. Eastman The Thermodynamics of Non-Isothermal Systems. , 1926 .

[36]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[37]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[38]  Gang Chen,et al.  High-performance flat-panel solar thermoelectric generators with high thermal concentration. , 2011, Nature materials.