Hair cell distribution and orientation in goldfish otolith organs

Structurally diverse sensory regions occur in the otolith organs of the goldfish inner ear. Scanning electron microscopy reveals regional distinctions based on thre criteria. (1) Hair cells have difference sizes of apical bundles, based on thickness. In all three maculae, two central regions have hair cells with bundles significantly thicker than those in surrounding regions. (2) Hair cell population density varies, with regional aggregations present. The central regions with thick bundles have two to three times the density of surrounding regions with thin bundles, and contain 40‐80% of the total hair cell number in each macula. (3) Hair cell orientation maps show that each macula has two oppositely oriented cell populations that can be separated completely, not by a zone of interspersion, but apparently by a single unbroken line

[1]  A. Popper Ultrastructure of the auditory regions in the inner ear of the lake whitefish. , 1976, Science.

[2]  E. Lewis,et al.  Hair cell types and distributions in the otolithic and auditory organs of the bullfrog , 1975, Brain Research.

[3]  R. R. Capranica,et al.  Auditory responses from the saccule: further evidence for the mechanical origin of inhibition , 1974 .

[4]  O. Sand Directional sensitivity of microphonic potentials from the perch ear. , 1974, The Journal of experimental biology.

[5]  R. Fay,et al.  Vibration detection by the macula neglecta of sharks. , 1974, Comparative biochemistry and physiology. A, Comparative physiology.

[6]  M. Correia,et al.  The sensura neglecta in the pigeon: A scanning electron and light microscope study , 1974, The Journal of comparative neurology.

[7]  M. R. Miller Scanning electron microscope studies of some lizard basilar papillae. , 1973, The American journal of anatomy.

[8]  V. C. Barber,et al.  Scanning electron microscopical studies of the arrangements and numbers of hair cells in the statocysts of Octopus vulgaris, Sepia officinalis and Loligo vulgaris. , 1973, Brain research.

[9]  E. Lewis,et al.  Evidence concerning the morphogenesis of saccular receptors in the bullfrog (Rana catesbeiana) , 1973, Journal of morphology.

[10]  M. Correia,et al.  Vestibular ampullary structures in the pigeon: A scanning electron microscope overview , 1972, The Anatomical record.

[11]  U Rosenhall,et al.  Vestibular Macular Mapping in Man , 1972, The Annals of otology, rhinology, and laryngology.

[12]  O. Lowenstein,et al.  The labyrinth of Myxine: anatomy, ultrastructure and electrophysiology , 1970, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  W. C. Lane,et al.  Vestibular sensory epithea. A scanning electron microscopic observation. , 1969, Archives of otolaryngology.

[14]  D E Hillman,et al.  New ultrastructural findings regarding a vestibular ciliary apparatus and its possible functional significance. , 1969, Brain research.

[15]  O. Lowenstein,et al.  The anatomy and ultrastructure of the labyrinth of the lamprey (Lampetra fluviatilis L.) , 1968, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  T. Furukawa,et al.  Neurophysiological studies on hearing in goldfish. , 1967, Journal of neurophysiology.

[17]  Robert Joseph Wolfson,et al.  Ultrastructure of the Vestibular Sense Organ , 1966 .

[18]  A. Flock,et al.  STRUCTURE OF THE MACULA UTRICULI WITH SPECIAL REFERENCE TO DIRECTIONAL INTERPLAY OF SENSORY RESPONSES AS REVEALED BY MORPHOLOGICAL POLARIZATION , 1964, The Journal of cell biology.

[19]  J. Wersäll,et al.  Structure and innervation of the sensory epithelia of the labyrinth in the Thornback ray (Raja clavata) , 1964, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[20]  M. Cohen The response patterns of single receptors in the crustacean statocyst , 1960, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  J. Wersäll,et al.  A Functional Interpretation of the Electron-Microscopic Structure of the Sensory Hairs in the Cristæ of the Elasmobranch Raja clavata in Terms of Directional Sensitivity , 1959, Nature.

[22]  T. Roberts,et al.  The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates , 1951, The Journal of physiology.

[23]  T. Roberts,et al.  The equilibrium function of the otolith organs of the thornback ray (Raja clavata) , 1949, The Journal of physiology.

[24]  T. Hoshino An electron microscopic study of the otolithic maculae of the lamprey (Entosphenus japonicus). , 1975, Acta oto-laryngologica.

[25]  B. Engström,et al.  Surface structures of the human vestibular sensory regions. , 1974, Acta oto-laryngologica. Supplementum.

[26]  Y. Harada Surface view of the frog vestibular organ with the scanning electron microscope. , 1972, Acta oto-laryngologica.

[27]  O. Lowenstein 7 The Labyrinth , 1971 .

[28]  D. H. H. Lindeman,et al.  Studies on the Morphology of the Sensory Regions of the Vestibular Apparatus , 1969, Advances in Anatomy, Embryology and Cell Biology / Ergebnisse der Anatomie und Entwicklungsgeschichte / Revues d’anatomie et de morphologie expérimentale.

[29]  J. Wersäll,et al.  Structural basis for directional sensitivity in cochlear and vestibular sensory receptors. , 1965, Cold Spring Harbor symposia on quantitative biology.

[30]  Gustaf Retzius,et al.  Das Gehörorgan der Fische und Amphibien , 1881 .