Impulse Product Parameter in Landslide Generated Impulse Waves

Subaerial landslide generated impulse waves were investigated in a prismatic wave channel based on Froude similitude and granular slide material. The tests included the following seven governing parameters: still water depth, slide impact velocity, slide thickness, bulk slide volume, bulk slide density, slide impact angle, and grain diameter. All governing parameters, except for the grain diameter with a negligible effect, are included in the impulse product parameter P allowing for a simple application. Empirical equations based on 211 experiments for all relevant wave features in practice including the maximum wave height, the maximum wave amplitude with its location and period in the slide impact zone, and both the wave height and amplitude decay and the period increase in the wave propagation zone are a simple function of P. The presented equations were validated with 223 runs resulting in improved goodness of fit. The limitations of the herein derived empirical equations are also highlighted. The wave height and amplitude equations based on a wave channel (2D) agree well with the 1958 Lituya Bay case.

[1]  Philip Watts,et al.  Tsunamis generated by subaerial mass flows , 2003 .

[2]  Robert G. Dean,et al.  Water wave mechanics for engineers and scientists , 1983 .

[3]  Hermann M. Fritz,et al.  Initial phase of landslide generated impulse waves , 2002 .

[4]  Willi H. Hager,et al.  Plane Impulse Waves in Reservoirs , 2006 .

[5]  Willi H. Hager,et al.  Rutscherzeugte impulswellen in stauseen - grundlagen und berechnung [landslide generated impulse waves in reservoirs - basics and computation] , 2009 .

[6]  Fumihiko Imamura,et al.  Landslide Tsunamis: Recent Findings and Research Directions , 2003 .

[7]  Hermann M. Fritz,et al.  Hybrid modeling of the mega‐tsunami runup in Lituya Bay after half a century , 2009 .

[8]  Hermann M. Fritz,et al.  Lituya Bay Case Rockslide Impact and Wave Run-up , 2001 .

[9]  P. De Girolamo,et al.  Forecasting impulse waves generated by subaerial landslides , 2005 .

[10]  W. Hager,et al.  Scale effects in subaerial landslide generated impulse waves , 2008 .

[11]  B. Ataie‐Ashtiani,et al.  Estimation of near-field characteristics of tsunami generation by submarine landslide , 2008 .

[12]  Hermann M. Fritz,et al.  Pneumatic Landslide Generator , 2003 .

[13]  Don J. Miller,et al.  Giant waves in Lituya Bay, Alaska , 1960 .

[14]  J. W. Kamphuis,et al.  IMPULSE WAVES GENERATED BY LANDSLIDES , 1970 .

[15]  V. Heller Landslide generated impulse waves: prediction of near field characteristics , 2007 .

[16]  K. Wuennemann,et al.  Understanding tsunami by landslides as the next challenge for hazard, risk and mitigation: Insight from multi-material hydrocode modeling , 2007 .

[17]  E. Buckingham On Physically Similar Systems; Illustrations of the Use of Dimensional Equations , 1914 .

[18]  Willi H. Hager,et al.  Landslide generated impulse waves. , 2003 .

[19]  W. Hager,et al.  Wave types of landslide generated impulse waves , 2011 .

[20]  Ivica Vilibić,et al.  Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band , 2006 .

[21]  M. Quecedo,et al.  Numerical modelling of impulse wave generated by fast landslides , 2004 .

[22]  J. Johnson,et al.  Impulsive waves in shallow water as generated by falling weights , 1949 .

[23]  Philip Watts,et al.  Tsunami features of solid block underwater landslides , 2000 .

[24]  Willi H. Hager,et al.  Near Field Characteristics of Landslide Generated Impulse Waves , 2004 .

[25]  D. Varnes,et al.  Landslide types and processes , 2004 .

[26]  George Gabriel Stokes,et al.  On the theory of oscillatory waves , 2009 .

[27]  Michael L. Gittings,et al.  MODELING THE 1958 LITUYA BAY MEGA-TSUNAMI, II , 2002 .

[28]  David M. Cruden,et al.  LANDSLIDES: INVESTIGATION AND MITIGATION. CHAPTER 3 - LANDSLIDE TYPES AND PROCESSES , 1996 .

[29]  Andreas Zweifel,et al.  Impulswellen: Effekte der Rutschdichte und der Wassertiefe , 2004 .

[30]  Joseph John Monaghan,et al.  Scott Russell’s wave generator , 2000 .

[31]  Willi H. Hager,et al.  Landslide generated impulse waves. 2. Hydrodynamic impact craters , 2003 .

[32]  A. Huber Schwallwellen in Seen als Folge von Felsstürzen , 1980 .

[33]  Helmut J. Körner,et al.  Reichweite und Geschwindigkeit von Bergstürzen und Fließschneelawinen , 1976 .

[34]  Costas E. Synolakis,et al.  Runup and rundown generated by three-dimensional sliding masses , 2005, Journal of Fluid Mechanics.

[35]  H. Schwaiger,et al.  Lagrangian hydrocode simulations of the 1958 Lituya Bay tsunamigenic rockslide , 2007 .

[36]  Marcello Di Risio,et al.  Analytical Modeling of Landslide-Generated Waves , 2008 .

[37]  R. E. Meyer,et al.  Climb of a bore on a beach Part 3. Run-up , 1963, Journal of Fluid Mechanics.

[38]  Steven A Hughes,et al.  PHYSICAL MODELS AND LABORATORY TECHNIQUES IN COASTAL ENGINEERING , 1993 .

[39]  Edward K. Noda,et al.  Water Waves Generated by Landslides in Reservoirs , 1970 .

[40]  Edward K. Noda,et al.  Water Waves Generated by Landslides , 1970 .