Semigrand Canonical Monte Carlo Simulation; Integration Along Coexistence Lines

[1]  D. Kofke,et al.  Efficient evaluation of three-phase coexistence lines , 1994 .

[2]  M. Klein,et al.  Effects of particle size fluctuations in a breathing Lennard-Jones liquid , 1993 .

[3]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[4]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[5]  D. Kofke,et al.  Coexistence diagrams of mixtures by molecular simulation , 1994 .

[6]  D. Kofke,et al.  Thermodynamic and structural properties of model systems at solid-fluid coexistence: I. Fcc and bcc soft spheres , 1995 .

[7]  L. F. Rull,et al.  Phase equilibria and critical behavior of square‐well fluids of variable width by Gibbs ensemble Monte Carlo simulation , 1992 .

[8]  D. Kofke,et al.  Thermodynamic and structural properties of model systems at solid-fluid coexistence: I. Fcc and bcc soft spheres , 1995 .

[9]  Bruce J. Berne,et al.  Method for accelerating chain folding and mixing , 1993 .

[10]  Athanassios Z. Panagiotopoulos,et al.  Phase equilibria by simulation in the Gibbs ensemble , 1988 .

[11]  M. S. Shaw Monte Carlo simulation of equilibrium chemical composition of molecular fluid mixtures in the Natoms PT ensemble , 1991 .

[12]  Daan Frenkel,et al.  New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres , 1984 .

[13]  D. Frenkel,et al.  Colloids dispersed in polymer solutions. A computer simulation study , 1994 .

[14]  Nigel B. Wilding,et al.  Density fluctuations and field mixing in the critical fluid , 1992 .

[15]  J. Forsman,et al.  Simulations of phase equilibria in planar slits , 1997 .

[16]  William G. Hoover,et al.  Melting Transition and Communal Entropy for Hard Spheres , 1968 .

[17]  J. Pablo,et al.  PSEUDO-ENSEMBLE SIMULATIONS AND GIBBS-DUHEM INTEGRATIONS FOR POLYMERS , 1997 .

[18]  C. Woodward,et al.  Simulations in planar slits at constant chemical potential , 1994 .

[19]  E. Glandt,et al.  Monte carlo simulation of continuous Lennard-Jones mixtures , 1986 .

[20]  D. Frenkel,et al.  Does C60 have a liquid phase? , 1993, Nature.

[21]  William R. Smith,et al.  THE REACTION ENSEMBLE METHOD FOR THE COMPUTER SIMULATION OF CHEMICAL AND PHASE EQUILIBRIA. I: THEORY AND BASIC EXAMPLES , 1994 .

[22]  Peter T. Cummings,et al.  Quantitative comparison and optimization of methods for evaluating the chemical potential by molecular simulation , 1997 .

[23]  C. Woodward,et al.  Constant‐NTμ simulations: Free energy difference method for excess adsorption , 1996 .

[24]  H. Deutsch First- and second-order phase transitions in asymmetric polymer mixtures , 1993 .

[25]  David A. Kofke,et al.  Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation , 1993 .

[26]  D. Kofke,et al.  Simulation of adsorption of liquid mixtures of N2 and O2 in a model faujasite cavity at 77.5 K , 1996 .

[27]  J. Wheeler,et al.  Critical Points in Multicomponent Systems , 1970 .

[28]  M. P. Allen,et al.  Phase coexistence in a pseudo gibbs ensemble , 1996 .

[29]  D. Kofke Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line , 1993 .

[30]  F. Ree,et al.  Phase diagram of a Lennard‐Jones solid , 1993 .

[31]  D. Kofke Solid-Fluid Coexistence in Binary Hard Sphere Mixtures by Semigrand Monte Carlo Simulation , 1991 .

[32]  Ross,et al.  High-pressure melting curves of alkali halides. , 1996, Physical review. B, Condensed matter.

[33]  E. Glandt,et al.  Nearly monodisperse fluids. I. Monte Carlo simulations of Lennard‐Jones particles in a semigrand ensemble , 1987 .

[34]  J. Pablo,et al.  Monte Carlo simulation of athermal mesogenic chains: Pure systems, mixtures, and constrained environments , 1997 .

[35]  D. Kofke,et al.  Molecular simulation in a pseudo grand canonical ensemble , 1995 .

[36]  D. Frenkel Advanced Monte Carlo techniques , 1993 .

[37]  Evert Jan Meijer,et al.  NOVEL PROCEDURE TO DETERMINE COEXISTENCE LINES BY COMPUTER SIMULATION. APPLICATION TO HARD-CORE YUKAWA MODEL FOR CHARGE-STABILIZED COLLOIDS , 1997 .

[38]  E. Glandt,et al.  Infinitely polydisperse fluids , 1989 .

[39]  P. A. Monson,et al.  Monte Carlo simulation study of adsorption from a liquid mixture at states near liquid-liquid coexistence , 1993 .

[40]  E. Glandt,et al.  Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble , 1988 .

[41]  P. Bolhuis,et al.  Numerical study of freezing in polydisperse colloidal suspensions , 1996 .

[42]  R. Griffiths,et al.  Thermodynamic Properties near the Liquid-Vapor Critical Line in Mixtures of He 3 and He 4 , 1973 .

[43]  K. Binder,et al.  Critical behavior and crossover scaling in symmetric polymer mixtures: a Monte Carlo investigation , 1992 .

[44]  Ferrenberg,et al.  Statistical errors in histogram reweighting. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  Daan Frenkel,et al.  Determination of phase diagrams for the hard-core attractive Yukawa system , 1994 .

[46]  Kenji Kiyohara,et al.  Phase coexistence properties of polarizable Stockmayer fluids , 1996, physics/9610022.

[47]  E. Glandt,et al.  Statistical thermodynamics of polydisperse fluids , 1984 .

[48]  C. Shew,et al.  Phase behavior of the Widom–Rowlinson mixture , 1996 .

[49]  I. Szleifer,et al.  Phase transitions in thin films of symmetric binary polymer mixtures , 1994 .

[50]  M. T. D. Gama,et al.  Liquid–liquid phase equilibria of symmetrical mixtures by simulation in the semigrand canonical ensemble , 1995 .

[51]  D. Young Statistical mechanics of phase diagrams. II. A simple cell model for the metallic elements , 1973 .

[52]  E. Glandt,et al.  A composition density functional theory for mixtures based upon an infinitely polydisperse reference. II. Freezing in hard sphere mixtures , 1990 .

[53]  K. Gubbins,et al.  Reactive canonical Monte Carlo : a new simulation technique for reacting or associating fluids , 1994 .

[54]  L. F. Rull,et al.  Vapor–liquid and liquid–liquid phase equilibria of mixtures containing square‐well molecules by Gibbs ensemble Monte Carlo simulation , 1994 .

[55]  K. Binder,et al.  Critical properties of the Flory–Huggins lattice model of polymer mixtures , 1987 .

[56]  S. Sandler,et al.  Phase equilibria for the mean-force potential of globular protein solutions , 1997 .

[57]  D. Tildesley,et al.  Phase equilibria in polydisperse fluids , 1990 .

[58]  E. Lomba,et al.  Phase stability of binary non‐additive hard‐sphere mixtures: A self‐consistent integral equation study , 1996 .

[59]  Wilding,et al.  Scaling fields and universality of the liquid-gas critical point. , 1992, Physical review letters.

[60]  C. P. Mason,et al.  The isotropic–nematic phase transition in uniaxial hard ellipsoid fluids: Coexistence data and the approach to the Onsager limit , 1996 .

[61]  D. Coker,et al.  Computer simulation of reactive liquids in chemical equilibrium , 1981 .

[62]  Agrawal,et al.  Solid-fluid coexistence for inverse-power potentials. , 1995, Physical review letters.

[63]  Doros N. Theodorou,et al.  Variable Connectivity Method for the Atomistic Monte Carlo Simulation of Polydisperse Polymer Melts , 1995 .

[64]  M. P. Allen,et al.  Effect of the attractive interactions on the phase behavior of the Gay–Berne liquid crystal model , 1996 .

[65]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[66]  D. Frenkel,et al.  Computer simulations in the Gibbs ensemble , 1989 .

[67]  D. Coker,et al.  Chemical equilibria in mixtures of bromine and chlorine , 1981 .

[68]  Peter G. Bolhuis,et al.  Tracing the phase boundaries of hard spherocylinders , 1997 .

[69]  P. Bolhuis,et al.  Monte Carlo study of freezing of polydisperse hard spheres. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[70]  Frenkel,et al.  Simulation study of the isotropic-to-nematic transitions of semiflexible polymers. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[71]  E. Glandt,et al.  A composition density functional theory for mixtures based upon an infinitely polydisperse reference. I. Formalism and theory , 1990 .