Total Carbon and Nitrogen and Granulometric Fractions of Soil Organic Matter Under No-Till System and Conventional Tillage with Onion Cultivation

Objective: The objective of this work was to evaluate the total carbon (C) and nitrogen (N) contents and the granulometric fractions of soil organic matter (SOM) under different management systems with single and intercropped winter cover crops in the cultivation of onion in Ituporanga, SC.   Theoretical framework: Onion cultivation typically occurs in a conventional tillage system (CTC), which favors the loss of C and N from the soil due to soil mobilization. The vegetable no-tillage system (VNTS) uses sustainable practices with continuous soil cover and restricted soil tillage, promoting improvement of edaphic attributes.   Methodology: The experiment was implemented in 2009 and the collection of soil samples took place in 2019 in the layers of 0-5, 5-10 and 10-30 cm in the treatments under VNTS, being black oat (AV); rye (CE); oilseed radish (NB); rye + radish (CE+NB); black oat + oilseed radish (AV+NB) and spontaneous vegetation (VE). In addition to these treatments, two adjacent areas were used, one under CTS and the other in a secondary forest area (MATA). The content of total organic C (TOC), total N (NT), light organic matter in water (LOM), particulate organic carbon (POC), particulate nitrogen (PN), C associated with minerals (COam) and N associated with to minerals (NAM).   Results and conclusions: VNTS increased TOC and NT contents with the use of grass and cruciferous intercropping to the detriment of single crops and CTS. The LOM content was higher in VNTS with the use of single grasses and stood out in relation to VNTS with consortium. There were no differences for PN between MATA, CE and CE+NB, demonstrating that VNTS is efficient in raising these levels in substitution of CTS. The CE+NB consortium increased the levels of COam and NAM in the surface layer of the soil after replacing CTS with VNTS.   Research implications: In VNTS, the use of intercropping between cover crops is an efficient management in adding C and N to the soil, as the simultaneous cultivation of different species of cover crops produces straw with an intermediate C/N ratio, the roots exploit different soil extracts and nutrient cycling is more efficient.   Originality/Value: The results of this study are from a long-term experiment (10 years), which demonstrates the effectiveness of VNTS in recovering and increasing C and N levels in soil previously cultivated for a long period in the CTS, in addition to to match the forest area.

[1]  I. Fontgalland,et al.  Normalized Difference Vegetation Index Analysis Using Ndvi and Savi Indices in the Conservation Unit Serra da Borborema Municipal Nature Park, Campina Grande, Paraíba, Brazil , 2023, Revista de Gestão Social e Ambiental.

[2]  S. Cordeau,et al.  Cereal rye mulch biomass and crop density affect weed suppression and community assembly in no‐till planted soybean , 2022, Ecosphere.

[3]  M. Komatsuzaki,et al.  Soil carbon sequestration and soil quality change between no-tillage and conventional tillage soil management after 3 and 11 years of organic farming , 2021, Soil Science and Plant Nutrition.

[4]  I. Bertol,et al.  Remaining effect of long-term soil tillage on plant biomass yield and water erosion in a Cambisol after transition to no-tillage , 2021 .

[5]  C. Fernandes,et al.  Contribution of tillage systems and crop succession to soil structuring , 2021 .

[6]  G. Maltais-Landry,et al.  How soil biota regulate C cycling and soil C pools in diversified crop rotations , 2021 .

[7]  C. Rice,et al.  Intensification of no‐till agricultural systems: An opportunity for carbon sequestration , 2021, Soil Science Society of America Journal.

[8]  J. Maroušek,et al.  Influence of selected maize cultivation technologies on changes in the labile fraction of soil organic matter sandy-loam cambisol soil structure , 2021 .

[9]  F. Covacevich,et al.  Soil survey reveals a positive relationship between aggregate stability and anaerobically mineralizable nitrogen , 2020 .

[10]  R. S. Nicoloso,et al.  Early adoption of no-till mitigates soil organic carbon and nitrogen losses due to land use change , 2020 .

[11]  Dong-Gill Kim,et al.  Shifting cultivation maintains but its conversion to mono-cropping decreases soil carbon and nitrogen stocks compared to natural forest in Western Ethiopia , 2020, Plant and Soil.

[12]  J. Lavallee,et al.  Conceptualizing soil organic matter into particulate and mineral‐associated forms to address global change in the 21st century , 2019, Global change biology.

[13]  J. C. Bogiani,et al.  Soil carbon accumulation in cotton production systems in the Brazilian Cerrado , 2019, Acta Scientiarum. Agronomy.

[14]  Epagri Cepa Sintese Anual da Agricultura de Santa Catarina 2017-2018 , 2019 .

[15]  M. G. Pereira,et al.  Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. , 2019, The Science of the total environment.

[16]  L. B. Ferreira,et al.  Organic carbon and nitrogen contents and their fractions in soils with onion crops in different management systems , 2018 .

[17]  L. B. Ferreira,et al.  Carbon and nitrogen contents and aggregation index of soil cultivated with onion for seven years using crop successions and rotations , 2018, Soil and Tillage Research.

[18]  G. Brunetto,et al.  Weed Emergence in a Soil with Cover Crops in an Agroecological No-Tillage System , 2018, Planta Daninha.

[19]  H. Blanco‐Canqui,et al.  No-tillage and soil physical environment , 2018, Geoderma.

[20]  Milton C C Campos,et al.  ESTOQUE DE CARBONO DE LATOSSOLOS EM SISTEMAS DE MANEJO NATURAL E ALTERADO , 2018 .

[21]  R. White,et al.  Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity , 2017 .

[22]  Y. Ouyang,et al.  Soil organic matter as sole indicator of soil degradation , 2017, Environmental Monitoring and Assessment.

[23]  Y. Li,et al.  Soil carbon as affected by cover crops under no‐till under tropical climate , 2016 .

[24]  M. E. Marchetti,et al.  Frações granulométricas da matéria orgânica do solo em consórcio de milho safrinha com capim-marandu sob fontes de nitrogênio , 2016 .

[25]  A. Perin,et al.  Estoques e frações da matéria orgânica do solo sob os sistemas plantio direto e convencional de repolho , 2016 .

[26]  L. Silva,et al.  Compartimentos de carbono orgânico em Latossolo cultivado com hortaliças sob diferentes manejos , 2016 .

[27]  G. Brunetto,et al.  Cover Crops Effects on Soil Chemical Properties and Onion Yield , 2016 .

[28]  Volnei Pauletti,et al.  Crescimento e absorção de nutrientes pela cultivar de cebola Bola Precoce , 2016 .

[29]  B. Murphy Impact of soil organic matter on soil properties—a review with emphasis on Australian soils , 2015 .

[30]  Sang Yoon Kim,et al.  Optimization of removal and recycling ratio of cover crop biomass using carbon balance to sustain soil organic carbon stocks in a mono-rice paddy system , 2015 .

[31]  A. Loss,et al.  CARBONO ORGÂNICO TOTAL E AGREGAÇÃO DO SOLO EM SISTEMA DE PLANTIO DIRETO AGROECOLÓGICO E CONVENCIONAL DE CEBOLA , 2015 .

[32]  Yuncong C. Li,et al.  Soil Aggregation, Organic Carbon Concentration, and Soil Bulk Density As Affected by Cover Crop Species in a No-Tillage System , 2015 .

[33]  R. P. Martins,et al.  Mineralização do nitrogênio de plantas de cobertura, solteiras e consorciadas, depositadas sobre um solo com histórico de cultivo de cebola , 2014 .

[34]  Sidinei Julio Beutler,et al.  Frações granulométricas e oxidáveis de matéria orgânica sob diferentes sistemas de uso do solo, no Paraná, Brasil = Granulometric and oxidizable fractions of organic matter under different land use systems in the state of Paraná, Brazil , 2013 .

[35]  Célia Regina Ferrari Faganello Noirtin Desafios dos Serviços de Assistência Técnica e Extensão Rural Visando o Desenvolvimento Sustentável de Comunidades Rurais do Município de Cruz das Almas - BA , 2013, Journal of Law and Sustainable Development.

[36]  Célia Regina Ferrari Fraganello Noirtin Desafios dos Serviços de Assistência Técnica e Extensão Rural Visando o Desenvolvimento Sustentável de Comunidades Rurais do Município de Cruz das Almas - BA , 2013 .

[37]  C. Hickmann,et al.  Estoque de carbono no solo e agregados em Argissolo sob diferentes manejos de longa duração , 2012 .

[38]  M. G. Pereira,et al.  Carbon and Nitrogen Content and Stock in No-Tillage and Crop-livestock Integration Systems in the Cerrado of Goias State, Brazil , 2012 .

[39]  K. Balkcom,et al.  Impact of No-Tillage and Conventional Tillage Systems on Soil Microbial Communities , 2012 .

[40]  M. L. G. Ramos,et al.  Frações granulométricas da matéria orgânica em latossolo sob plantio direto com gramineas = Granulometric fractions of organic matter of a latosol under no-till with grasses , 2012 .

[41]  F. M. Mercante,et al.  Frações lábeis e recalcitrantes da matéria orgânica em solos sob integração lavoura-pecuária , 2011 .

[42]  B. F. Iwata,et al.  Atributos químicos e estoques de carbono em Latossolo sob plantio direto no cerrado do Piauí , 2010 .

[43]  J. M. Reichert,et al.  Recuperação da qualidade estrutural, pelo sistema plantio direto, de um Argissolo Vermelho , 2008 .

[44]  J. Mielniczuk,et al.  Estoque de carbono orgânico no solo e emissões de dióxido de carbono influenciadas por sistemas de manejo no sul do Brasil , 2008 .

[45]  E. S. Mendonça,et al.  Carbono e nitrogênio em agregados de Latossolo submetido a diferentes sistemas de uso e manejo , 2006 .

[46]  Claire Chenu,et al.  Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil , 2006 .

[47]  I. Anghinoni,et al.  Atributos físicos de um argissolo e rendimento de culturas de acordo com o revolvimento do solo em plantio direto , 2006 .

[48]  J. Mielniczuk,et al.  Qualidade do solo em sistemas de manejo avaliada pela dinâmica da matéria orgânica e atributos relacionados , 2005 .

[49]  J. Mielniczuk,et al.  Adição de carbono e nitrogênio e sua relação com os estoques no solo e com o rendimento do milho em sistemas de manejo , 2004 .

[50]  M. R. Carter,et al.  Towards a minimum data set to assess soil organic matter quality in agricultural soils , 1994 .

[51]  J. M. Anderson,et al.  Tropical Soil Biology and Fertility: A Handbook of Methods , 1994 .

[52]  C. A. Campbell,et al.  Light-fraction organic matter in soils from long-term crop rotations , 1992 .

[53]  E. T. Elliott,et al.  Particulate soil organic-matter changes across a grassland cultivation sequence , 1992 .

[54]  I. Baillie,et al.  Tropical Soil Biology and Fertility: A Handbook of Methods. , 1990 .

[55]  J. Dieckow,et al.  Soil organic matter fractions in an Oxisol under tillage systems and winter cover crops for 26 years in the Brazilian subtropics , 2022, Bragantia.

[56]  M. Komatsuzaki,et al.  A cover crop and no-tillage system for enhancing soil health by increasing soil organic matter in soybean cultivation , 2021 .

[57]  J. J. Comin,et al.  Soil phosphorus availability and uptake by mycorrhizal and non-mycorrhizal plants in an onion no-tillage system , 2021 .

[58]  A. Muley,et al.  Role of Microbes in Organic Matter Decomposition and Sustains the Soil Health , 2019 .

[59]  Helane França Silva,et al.  Matéria orgânica do solo e o seu papel na manutenção e produtividade dos sistemas agrícolas , 2013 .

[60]  Tiago Santos Telles,et al.  Revista Brasileira de Ciência do Solo , 2011 .

[61]  M. Pereira,et al.  Carbono, matéria orgânica leve e frações oxidáveis do carbono orgânico sob diferentes sistemas de produção orgânica , 2010 .

[62]  L. H. C. Anjos,et al.  Sistema Brasileiro de Classificação de Solos. , 2006 .

[63]  R. C. Alvarenga,et al.  Plantas de cobertura de solo para sistema plantio direto. , 2001 .