Optically stimulated luminescence dating using quartz

[1]  T. Stevens,et al.  Abrupt last glacial dust fall over southeast England associated with dynamics of the British-Irish ice sheet , 2020 .

[2]  M. Bateman,et al.  Seasonal control on coastal dune morphostratigraphy under a monsoon climate, Mui Ne dunefield, SE Vietnam , 2020 .

[3]  Weiguo Liu,et al.  Increasing effective moisture during the Holocene in the semiarid regions of the Yili Basin, Central Asia: Evidence from loess sections , 2020 .

[4]  Vinayak Kumar,et al.  Bleaching of blue light stimulated luminescence of quartz by moonlight , 2020, Journal of Earth System Science.

[5]  D. Sauer,et al.  Chronostratigraphy of two Late Pleistocene loess-palaeosol sequences in the Rhône Valley (southeast France) , 2020, Quaternary Science Reviews.

[6]  A. Wait,et al.  A review of marine sediment sampling methods , 2020 .

[7]  J. Barlow,et al.  Oriented-lake development in the context of late Quaternary landscape evolution, McKinley Bay Coastal Plain, western Arctic Canada , 2020 .

[8]  W. de Clercq,et al.  Bypassing the Suess-effect: Age determination of charcoal kiln remains using OSL dating , 2020 .

[9]  J. Feathers,et al.  Exploring complexity in luminescence dating of quartz and feldspars at the Middle Stone Age site of Mwulu's cave (Limpopo, South Africa) , 2020 .

[10]  Mohammad Reza Ghassemi,et al.  OSL dating of landslide-dammed-lake deposits in the North of Tehran, Iran: 958 Ray-Taleghan/Ruyan earthquake , 2020 .

[11]  S. Tao,et al.  Quantitative precipitation reconstructions from Chagan Nur revealed lag response of East Asian summer monsoon precipitation to summer insolation during the Holocene in arid northern China , 2020 .

[12]  N. Brown,et al.  Which geomorphic processes can be informed by luminescence measurements? , 2020 .

[13]  V. Vanacker,et al.  Electron spin resonance (ESR), optically stimulated luminescence (OSL) and terrestrial cosmogenic radionuclide (TCN) dating of quartz from a Plio-Pleistocene sandy formation in the Campine area, NE Belgium , 2020 .

[14]  E. al.,et al.  Early Holocene weakening and mid- to late Holocene strengthening of the East Asian winter monsoon , 2020, Geology.

[15]  D. Degering,et al.  Change is the only constant - time-dependent dose rates in luminescence dating , 2020 .

[16]  T. Pietsch,et al.  Extinction of eastern Sahul megafauna coincides with sustained environmental deterioration , 2020, Nature Communications.

[17]  R. Finkel,et al.  Stable Rate of Slip Along the Karakax Section of the Altyn Tagh Fault from Observation of Interglacial and Postglacial Offset Morphology and Surface Dating , 2020, Journal of Geophysical Research: Solid Earth.

[18]  Y. Yokoyama,et al.  Insights into subtropical Australian aridity from Welsby Lagoon, north Stradbroke Island, over the past 80,000 years , 2020 .

[19]  G. Tucker,et al.  Depth-dependent soil mixing persists across climate zones , 2020, Proceedings of the National Academy of Sciences.

[20]  J. Shulmeister,et al.  An 800 kyr record of dune emplacement in relationship to high sea level forcing, Cooloola Sand Mass, Queensland, Australia , 2020 .

[21]  F. d’Errico,et al.  Last Interglacial Iberian Neandertals as fisher-hunter-gatherers , 2020, Science.

[22]  G. Duller,et al.  Empirical assessment of beta dose heterogeneity in sediments: Implications for luminescence dating , 2020, Quaternary Geochronology.

[23]  F. Lehmkuhl,et al.  Revisiting the chronostratigraphy of Late Pleistocene loess-paleosol sequences in southwestern Ukraine: OSL dating of Kurortne section , 2020, Quaternary International.

[24]  M. Holmgren,et al.  Critical transitions in Chinese dunes during the past 12,000 years , 2020, Science Advances.

[25]  L. Arnold,et al.  Climates of the last three interglacials in subtropical eastern Australia inferred from wetland sediment geochemistry , 2020 .

[26]  Hui Zhao,et al.  Optical dating reveals that the height of Earth’s tallest megadunes in the Badain Jaran Desert of NW China is increasing , 2019, Journal of Asian Earth Sciences.

[27]  J. Pederson,et al.  Anatomy and evolution of a dynamic arroyo system, Kanab Creek, southern Utah, USA , 2019, GSA Bulletin.

[28]  T. Hirose,et al.  Experimental investigations on dating the last earthquake event using OSL signals of quartz from fault gouges , 2019, Tectonophysics.

[29]  Daniel A. Contreras,et al.  Earliest occupation of the Central Aegean (Naxos), Greece: Implications for hominin and Homo sapiens’ behavior and dispersals , 2019, Science Advances.

[30]  G. Tucker,et al.  Luminescence as a Sediment Tracer and Provenance Tool , 2019, Reviews of Geophysics.

[31]  A. Murray,et al.  Luminescence dating of buried cobble surfaces from sandy beach ridges: a case study from Denmark , 2019, Boreas.

[32]  J. Arsuaga,et al.  Single-grain OSL dating of the Middle Palaeolithic site of Galería de las Estatuas, Atapuerca (Burgos, Spain) , 2019, Quaternary Geochronology.

[33]  N. Guidon,et al.  Another site, same old song: The Pleistocene-Holocene archaeological sequence of Toca da Janela da Barra do Antonião-North, Piauí, Brazil , 2019, Quaternary Geochronology.

[34]  M. Meyer,et al.  OSL surface exposure dating of a lithic quarry in Tibet: Laboratory validation and application , 2019, Quaternary Geochronology.

[35]  A. Philippe,et al.  BayLum - An R package for Bayesian analysis of OSL ages: An introduction , 2019, Quaternary Geochronology.

[36]  L. Arnold,et al.  Marine Isotope Stage 4 in Australasia: A full glacial culminating 65,000 years ago – Global connections and implications for human dispersal , 2019, Quaternary Science Reviews.

[37]  M. Shunkov,et al.  Timing of archaic hominin occupation of Denisova Cave in southern Siberia , 2019, Nature.

[38]  A. Murray,et al.  Towards the origins of over-dispersion in beta source calibration , 2018, Radiation Measurements.

[39]  G. Guérin,et al.  OSL signal saturation and dose rate variability: Investigating the behaviour of different statistical models , 2018, Radiation Measurements.

[40]  A. Murray,et al.  First luminescence-depth profiles from boulders from moraine deposits: Insights into glaciation chronology and transport dynamics in Malta valley, Austria , 2018, Radiation Measurements.

[41]  O. Bar‐Yosef,et al.  The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago , 2018, Science.

[42]  Christian Zeeden,et al.  Loess correlations – Between myth and reality , 2018, Palaeogeography, Palaeoclimatology, Palaeoecology.

[43]  B. Marwick,et al.  Late Middle Pleistocene Levallois stone-tool technology in southwest China , 2018, Nature.

[44]  Y. Sohn,et al.  Magnetic assessment of OSL and radiocarbon ages of sediments beneath a lava in Jeju Island, Korea: Implication of possible resetting of OSL signals and age constraint of the late Quaternary lava , 2018, Quaternary Geochronology.

[45]  Huayu Lu,et al.  Response of dune mobility and pedogenesis to fluctuations in monsoon precipitation and human activity in the Hulunbuir dune field, northeastern China, since the last deglaciation , 2018, Global and Planetary Change.

[46]  J. Mason,et al.  Seesaw pattern in dust accumulation on the Chinese Loess Plateau forced by late glacial shifts in the East Asian monsoon , 2018, Geology.

[47]  L. Garnier,et al.  A novel interdisciplinary approach for building archaeology: The integration of mortar “single grain” luminescence dating into archaeological research, the example of Saint Seurin Basilica, Bordeaux , 2018, Journal of Archaeological Science: Reports.

[48]  N. Glasser,et al.  A new approach for luminescence dating glaciofluvial deposits - High precision optical dating of cobbles , 2018, Quaternary Science Reviews.

[49]  J. García‐Ruiz,et al.  Landslide-dam paleolakes in the Central Pyrenees, Upper Gállego River Valley, NE Spain: timing and relationship with deglaciation , 2018, Landslides.

[50]  R. Schumer,et al.  Soil Particle Transport and Mixing Near a Hillslope Crest: 2. Cosmogenic Nuclide and Optically Stimulated Luminescence Tracers , 2018 .

[51]  A. Murray,et al.  Measurement of natural radioactivity: Calibration and performance of a high-resolution gamma spectrometry facility , 2018, Radiation Measurements.

[52]  A. Murray,et al.  Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site , 2018, Nature Communications.

[53]  A. Murray,et al.  Timing of lake-level changes for a deep last-glacial Lake Missoula: optical dating of the Garden Gulch area, Montana, USA , 2018 .

[54]  M. Bateman,et al.  The chronology of Late Pleistocene thermal contraction cracking derived from sand wedge OSL dating in central and southern France , 2018 .

[55]  C. Applegate,et al.  Cultural History: Where It Has Been and Where It Is Going , 2018, Central European History.

[56]  J. Buylaert,et al.  Timing of lake-level changes for a deep last-glacial Lake Missoula: optical dating of the Garden Gulch area, Montana, USA , 2018 .

[57]  G. Guérin,et al.  Environmental dose rate determination using a passive dosimeter: Techniques and workflow for α-Al2O3:C chips , 2018 .

[58]  L. Arnold,et al.  First evidence of an extensive Acheulean large cutting tool accumulation in Europe from Porto Maior (Galicia, Spain) , 2018, Scientific Reports.

[59]  E. Carbonell,et al.  Single-grain TT-OSL bleaching characteristics: Insights from modern analogues and OSL dating comparisons , 2018, Quaternary Geochronology.

[60]  A. Vulpoi,et al.  Luminescence properties of natural muscovite relevant to optical dating of contaminated quartz samples , 2018 .

[61]  G. Guérin,et al.  Modeling incomplete and heterogeneous bleaching of mobile grains partially exposed to the light: Towards a new tool for single grain OSL dating of poorly bleached mortars , 2017 .

[62]  P. Mason,et al.  Counter-intuitive influence of Himalayan river morphodynamics on Indus Civilisation urban settlements , 2017, Nature Communications.

[63]  N. Porat,et al.  On the importance of grain size in luminescence dating using quartz , 2017 .

[64]  T. Rittenour,et al.  Single-Grain Optically Stimulated Luminescence Dating of Quartz Temper From Prehistoric Intermountain Ware Ceramics, Northwestern Wyoming, USA , 2017 .

[65]  J. Shaw,et al.  Active thrust sheet deformation over multiple rupture cycles: A quantitative basis for relating terrace folds to fault slip rates , 2017 .

[66]  A. Philippe,et al.  Absorbed dose, equivalent dose, measured dose rates, and implications for OSL age estimates: Introducing the Average Dose Model , 2017 .

[67]  M. Meyer,et al.  Variations in luminescence properties of quartz and feldspar from modern fluvial sediments in three rivers , 2017 .

[68]  Lynley A. Wallis,et al.  Human occupation of northern Australia by 65,000 years ago , 2017, Nature.

[69]  Tao Wang,et al.  Late Holocene dune mobilization in the Horqin dunefield of northern China , 2017 .

[70]  L. Arnold,et al.  Extending the record of lacustrine phases beyond the last interglacial for Lake Eyre in central Australia using luminescence dating , 2017 .

[71]  S. Armitage,et al.  Testing the applicability of optically stimulated luminescence dating to Ocean Drilling Program cores , 2017 .

[72]  L. Lindvold,et al.  Optimization of laboratory illumination in optical dating , 2017 .

[73]  A. Philippe,et al.  Bayesian analysis of individual and systematic multiplicative errors for estimating ages with stratigraphic constraints in optically stimulated luminescence dating , 2017 .

[74]  G. Guérin,et al.  The complementarity of luminescence dating methods illustrated on the Mousterian sequence of the Roc de Marsal: A series of reindeer-dominated, Quina Mousterian layers dated to MIS 3 , 2017 .

[75]  M. Meyer,et al.  Fossil and genomic evidence constrains the timing of bison arrival in North America , 2017, Proceedings of the National Academy of Sciences.

[76]  E. Trinkaus,et al.  Late Pleistocene archaic human crania from Xuchang, China , 2017, Science.

[77]  A. Bhardwaj,et al.  In situ click chemistry generation of cyclooxygenase-2 inhibitors , 2017, Nature Communications.

[78]  S. Marković,et al.  Pottery versus sediment: Optically stimulated luminescence dating of the Neolithic Vinča culture, Serbia , 2017 .

[79]  M. Aldenderfer,et al.  Permanent human occupation of the central Tibetan Plateau in the early Holocene , 2017, Science.

[80]  C. Clark,et al.  New age constraints for the limit of the British–Irish Ice Sheet on the Isles of Scilly , 2017 .

[81]  N. Spooner,et al.  Cultural innovation and megafauna interaction in the early settlement of arid Australia , 2016, Nature.

[82]  Mark Quigley,et al.  Optical dating of loessic hillslope sediments constrains timing of prehistoric rockfalls, Christchurch, New Zealand , 2016 .

[83]  Nigel A. Spooner,et al.  OSL dating of individual quartz ‘supergrains’ from the Ancient Middle Palaeolithic site of Cuesta de la Bajada, Spain , 2016 .

[84]  Olaf Bubenzer,et al.  The INQUA Dunes Atlas chronologic database , 2016 .

[85]  Paul Hesse,et al.  How do longitudinal dunes respond to climate forcing? Insights from 25 years of luminescence dating of the Australian desert dunefields , 2016 .

[86]  Fahu Chen,et al.  History and mechanisms for the expansion of the Badain Jaran Desert, northern China, since 20 ka: Geological and luminescence chronological evidence , 2016 .

[87]  Testing single-grain quartz OSL methods using sediment samples with independent age control from the Bordes-Fitte rockshelter (Roches d'Abilly site, Central France) , 2016 .

[88]  Jun Peng Numeric Routines for Optically Stimulated Luminescence Dating , 2016 .

[89]  R. Sala,et al.  Extended-range luminescence chronologies suggest potentially complex bone accumulation histories at the Early-to-Middle Pleistocene palaeontological site of Huéscar-1 (Guadix-Baza basin, Spain) , 2015 .

[90]  Fahu Chen,et al.  Environmental changes in the Ulan Buh Desert, southern Inner Mongolia, China since the middle Pleistocene based on sedimentology, chronology and proxy indexes , 2015 .

[91]  Yong Wang,et al.  High-resolution OSL dating of a late Quaternary sequence from Xingkai Lake (NE Asia): Chronological challenge of the “MIS 3a Mega-paleolake” hypothesis in China , 2015 .

[92]  N. Porat,et al.  Violet stimulated luminescence: geo- or thermochronometer? , 2015 .

[93]  Y. Sawai,et al.  OSL dating of the AD 869 Jogan tsunami deposit, northeastern Japan , 2015 .

[94]  T. Rittenour,et al.  Using grain-size characteristics to model soil water content: Application to dose-rate calculation for luminescence dating , 2015 .

[95]  A. Murray,et al.  Testing the application of post IR IRSL dating to Iron- and Viking-age ceramics and heated stones from Denmark , 2015 .

[96]  L. Arnold,et al.  Insights into TT-OSL signal stability from single-grain analyses of known-age deposits at Atapuerca, Spain , 2015 .

[97]  Z. Lai,et al.  OSL and radiocarbon dating of flood deposits and its paleoclimatic and archaeological implications in the Yihe River Basin, East China , 2015 .

[98]  J. Vandenberghe,et al.  Climate-driven changes to dune activity during the Last Glacial Maximum and Deglaciation in the Mu Us dune field, north-central China , 2015 .

[99]  Petra Urbanova,et al.  Testing the accuracy of a Bayesian central-dose model for single-grain OSL, using known-age samples , 2015 .

[100]  A. Murray,et al.  A new irradiated quartz for beta source calibration , 2015 .

[101]  A. Murray,et al.  High resolution OSL and post-IR IRSL dating of the last interglacial–glacial cycle at the Sanbahuo loess site (northeastern China) , 2015 .

[102]  Liping Zhou,et al.  A new luminescence chronology for the Mangshan loess-palaeosol sequence on the southern bank of the Yellow River in Henan, central China , 2015 .

[103]  A. Murray,et al.  A luminescence dating intercomparison based on a Danish beach-ridge sand , 2015 .

[104]  A. Murray,et al.  Single-grain results from an EMCCD-based imaging system , 2015 .

[105]  S. Armitage Optically stimulated luminescence dating of Ocean Drilling Program core 658B: Complications arising from authigenic uranium uptake and lateral sediment movement , 2015 .

[106]  A. Murray,et al.  Fundamental investigations of natural and laboratory generated SAR dose response curves for quartz OSL in the high dose range , 2015 .

[107]  H. Zhao,et al.  Estimation of paleo-firing temperatures using luminescence signals for the volcanic lava baked layer in Datong, China , 2015 .

[108]  R. Chen,et al.  Single grain optically stimulated luminescence dating of glacial sediments from the Baiyu Valley, southeastern Tibet , 2015 .

[109]  David S. G. Thomas,et al.  Rapid age assessment in the Namib Sand Sea using a portable luminescence reader , 2015 .

[110]  G. St‐Onge,et al.  Quartz OSL dating of late Holocene beach ridges from the Magdalen Islands (Quebec, Canada) , 2015 .

[111]  A. Murray,et al.  Quantification of termite bioturbation in a savannah ecosystem: Application of OSL dating , 2015 .

[112]  C. Yi,et al.  Luminescence dating of glacial deposits near the eastern Himalayan syntaxis using different grain-size fractions , 2015 .

[113]  Z. Gong,et al.  Late Quaternary faulting on the Manas and Hutubi reverse faults in the northern foreland basin of Tian Shan, China , 2015 .

[114]  A. Murray,et al.  Drumlinised glaciofluvial and glaciolacustrine sediments on the Småland peneplain, South Sweden – new information on the growth and decay history of the Fennoscandian Ice Sheets during MIS 3 , 2015 .

[115]  M. Rasse,et al.  Defining a chronological framework for the Middle Stone Age in West Africa: Comparison of methods and models for OSL ages at Ounjougou (Mali) , 2015 .

[116]  N. Drake,et al.  West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad , 2015, Proceedings of the National Academy of Sciences.

[117]  Z. Lai,et al.  Aeolian sediments evolution controlled by fluvial processes, climate change and human activities since LGM in the Qaidam Basin, Qinghai-Tibetan Plateau , 2015 .

[118]  G. Guérin,et al.  A multi-method luminescence dating of the Palaeolithic sequence of La Ferrassie based on new excavations adjacent to the La Ferrassie 1 and 2 skeletons , 2015 .

[119]  G. Duller,et al.  DRAC: Dose Rate and Age Calculator for trapped charge dating , 2015 .

[120]  Philippe Lanos,et al.  A Bayesian central equivalent dose model for optically stimulated luminescence dating , 2015 .

[121]  J. Feathers,et al.  User Guide for Luminescence Sampling in Archaeological and Geological Contexts , 2015, Advances in Archaeological Practice.

[122]  G. Guérin,et al.  Modelling dose rate to single grains of quartz in well-sorted sand samples: The dispersion arising from the presence of potassium feldspars and implications for single grain OSL dating , 2015 .

[123]  E. Rhodes,et al.  Assessing Optically Stimulated Luminescence (OSL) signal contamination within small aliquots and single grain measurements utilizing the composition test , 2015 .

[124]  T. Cohen,et al.  All mixed up: Using single-grain equivalent dose distributions to identify phases of pedogenic mixing on a dryland alluvial fan , 2015 .

[125]  B. Jones,et al.  Hydrological transformation coincided with megafaunal extinction in central Australia , 2015 .

[126]  G. Mathew,et al.  OSL-thermochronometry using bedrock quartz: A note of caution , 2015 .

[127]  A. Murray,et al.  OSL dating of fine-grained quartz from Holocene Yangtze delta sediments , 2014 .

[128]  Sung-ja Choi,et al.  Estimation of possible maximum earthquake magnitudes of Quaternary faults in the southern Korean Peninsula , 2014 .

[129]  J. Pederson,et al.  Age of Barrier Canyon-style rock art constrained by cross-cutting relations and luminescence dating techniques , 2014, Proceedings of the National Academy of Sciences.

[130]  A. Medialdea,et al.  Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments , 2014 .

[131]  M. Gloor,et al.  Quantifying the rate and depth dependence of bioturbation based on optically‐stimulated luminescence (OSL) dates and meteoric 10Be , 2014 .

[132]  R. Begy,et al.  High-resolution OSL dating of the Costineşti section (Dobrogea, SE Romania) using fine and coarse quartz , 2014 .

[133]  Z. Jacobs,et al.  Review and assessment of the potential of post-IR IRSL dating methods to circumvent the problem of anomalous fading in feldspar luminescence , 2014 .

[134]  K. Fitzsimmons,et al.  Multi-method luminescence investigations on quartz grains of different sizes extracted from a loess section in Southeast Romania interbedding the Campanian Ignimbrite ash layer , 2014 .

[135]  W. Erskine,et al.  Dating recent floodplain sediments in the Hawkesbury‐Nepean River system, eastern Australia using single‐grain quartz OSL , 2014 .

[136]  A. Wintle,et al.  On natural and laboratory generated dose response curves for quartz of different grain sizes from Romanian loess , 2013 .

[137]  P. Hesse,et al.  Palaeoenvironmental reconstructions from linear dunefields: recent progress, current challenges and future directions , 2013 .

[138]  A. Dicker,et al.  Correction: Identifying Barriers to Patient Acceptance of Active Surveillance: Content Analysis of Online Patient Communications , 2013, PLoS ONE.

[139]  B. Valero-Garcés,et al.  Late Holocene evolution of playa lakes in the central Ebro depression based on geophysical surveys and morpho-stratigraphic analysis of lacustrine terraces , 2013 .

[140]  O. Moine,et al.  The loess sequence of Dolní Věstonice, Czech Republic: A new OSL‐based chronology of the Last Climatic Cycle , 2013 .

[141]  Sheila Mishra,et al.  Continuity of Microblade Technology in the Indian Subcontinent Since 45 ka: Implications for the Dispersal of Modern Humans , 2013, PloS one.

[142]  M. Rasse,et al.  Human occupation in South America by 20,000 BC: the Toca da Tira Peia site, Piauí, Brazil , 2013 .

[143]  B. Fu,et al.  OSL dating of offset streams across the Altyn Tagh Fault: Channel deflection, loess deposition and implication for the slip rate , 2013 .

[144]  D. Richter,et al.  Lexsyg — A new system for luminescence research , 2013 .

[145]  M. Aitken,et al.  Chronometric Dating in Archaeology , 2013 .

[146]  XiangJun Liu,et al.  Optical dating of sand wedges and ice‐wedge casts from Qinghai Lake area on the northeastern Qinghai‐Tibetan Plateau and its palaeoenvironmental implications , 2013 .

[147]  Christina L. Kwapich,et al.  Subterranean transport and deposition of quartz by ants in sandy sites relevant to age overestimation in optical luminescence dating , 2013 .

[148]  L. Arnold,et al.  OSL dating of the Middle Palaeolithic Hotel California site, Sierra de Atapuerca, north‐central Spain , 2013 .

[149]  S. Colman,et al.  Introduction to Quaternary Geochronology , 2013 .

[150]  S. Armitage,et al.  Optically stimulated luminescence dating of hearths from the Fazzan Basin, Libya: A tool for determining the timing and pattern of Holocene occupation of the Sahara , 2013 .

[151]  D. Froese,et al.  OSL dating of loess deposits bracketing Sheep Creek tephra beds, northwest Canada: dim and problematic single-grain OSL characteristics and their effect on multi-grain age estimates , 2013 .

[152]  J. Pederson,et al.  Constraining the Age of Rock Art by Dating a Rockfall Event Using Sediment and Rock-Surface Luminescence Dating Techniques , 2012 .

[153]  Zhongping Lai,et al.  A comparison of natural- and laboratory-generated dose response curves for quartz optically stimulated luminescence signals from Chinese Loess , 2012 .

[154]  M. Bateman The evolution of coastal barrier systems: a case study of the Middle-Late Pleistocene Wilderness barriers, South Africa , 2012 .

[155]  G. Guérin,et al.  Multi-method (TL and OSL), multi-material (quartz and flint) dating of the Mousterian site of Roc de Marsal (Dordogne, France): correlating Neanderthal occupations with the climatic variability of MIS 5–3 , 2012 .

[156]  M. Bateman,et al.  Luminescence dating of beach ridges for characterizing multi-decadal to centennial deltaic shoreline changes during Late Holocene, Mekong River delta , 2012 .

[157]  L. Arnold,et al.  Empirical insights into multi-grain averaging effects from ‘pseudo’ single-grain OSL measurements , 2012 .

[158]  A. Murray,et al.  The dose dependency of the over-dispersion of quartz OSL single grain dose distributions , 2012 .

[159]  J. Schwenninger,et al.  First steps toward spatially resolved OSL dating with electron multiplying charge-coupled devices (EMCCDs): System design and image analysis , 2012 .

[160]  A. Murray,et al.  Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals , 2012 .

[161]  G. Duller Improving the accuracy and precision of equivalent doses determined using the optically stimulated luminescence signal from single grains of quartz , 2012 .

[162]  M. Leopold,et al.  Colluvial filling of a glacial bypass channel near the Chiemsee (Stöttham) and its function as geoarchive , 2012 .

[163]  J. Vandenberghe Multi-proxy analysis: a reflection on essence and potential pitfalls , 2012, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[164]  J. Pederson,et al.  Optically stimulated luminescence (OSL) as a chronometer for surface exposure dating , 2012 .

[165]  Rex Galbraith,et al.  Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations , 2012 .

[166]  A. Murray,et al.  Optically stimulated luminescence (OSL) dating of quartzite cobbles from the Tapada do Montinho archaeological site (east‐central Portugal) , 2012 .

[167]  T. Rittenour,et al.  Application of single-grain OSL to date quartz xenocrysts within a basalt flow, San Francisco volcanic field, northern Arizona, USA , 2012 .

[168]  Jie Chen,et al.  Optical dating of the 12 May 2008, Ms 8.0 Wenchuan earthquake-related sediments: Tests of zeroing assumptions ☆ , 2012 .

[169]  A. Murray,et al.  A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments , 2012 .

[170]  A. Murray,et al.  Luminescence signals from modern sediments in a glaciated bay, NW Svalbard , 2012 .

[171]  G. Guérin,et al.  Preliminary insight into dose deposition processes in sedimentary media on a scale of single grains: Monte Carlo modelling of the effect of water on the gamma dose rate , 2012 .

[172]  Sebastian Kreutzer,et al.  Introducing an R package for luminescence dating analysis , 2012 .

[173]  A. Murray,et al.  High resolution optically stimulated luminescence dating of a sediment core from the southwestern Sea of Okhotsk , 2012 .

[174]  F. Anselmetti,et al.  Testing the potential of luminescence dating of high-alpine lake sediments , 2012 .

[175]  S. Brocklehurst,et al.  Optically Stimulated Luminescence Dating Of Glaciofluvial Sediments On The Canterbury Plains, South Island, New Zealand , 2012 .

[176]  D. Froese,et al.  Single-grain OSL dating of glaciofluvial quartz constrains Reid glaciation in NW Canada to MIS 6 , 2012, Quaternary Research.

[177]  Z. Jacobs,et al.  Single-grain OSL chronologies for Middle Palaeolithic deposits at El Mnasra and El Harhoura 2, Morocco: implications for Late Pleistocene human-environment interactions along the Atlantic coast of northwest Africa. , 2012, Journal of human evolution.

[178]  G. Guérin,et al.  Field gamma spectrometry, Monte Carlo simulations and potential of non-invasive measurements , 2012 .

[179]  A. Wintle,et al.  A review of the thermally transferred optically stimulated luminescence signal from quartz for dating sediments , 2012 .

[180]  Z. Jacobs,et al.  Luminescence characteristics and dose distributions for quartz and feldspar grains from Mumba rockshelter, Tanzania , 2012, Archaeological and Anthropological Sciences.

[181]  G. Schreurs,et al.  Direct dating of Quaternary phreatic maar eruptions by luminescence methods , 2011 .

[182]  J. Wallinga,et al.  Expectations of scatter in equivalent-dose distributions when using multi-grain aliquots for OSL dating , 2011 .

[183]  M. Menu,et al.  A 100,000-Year-Old Ochre-Processing Workshop at Blombos Cave, South Africa , 2011, Science.

[184]  G. Duller,et al.  The fast ratio: A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz , 2011 .

[185]  Stephen W. S. McKeever,et al.  Separation of quartz optically stimulated luminescence components using green (525 nm) stimulation , 2011 .

[186]  C. Cosma,et al.  Optical dating of Romanian loess: A comparison between silt-sized and sand-sized quartz , 2011 .

[187]  J. Ritz,et al.  Using luminescence dating of coarse matrix material to estimate the slip rate of the Astaneh fault, Iran , 2011 .

[188]  A. Murray,et al.  Investigating the resetting of OSL signals in rock surfaces , 2011 .

[189]  A. Murray,et al.  A new method for measuring bioturbation rates in sandy tidal flat sediments based on luminescence dating , 2011 .

[190]  D. Sanderson,et al.  Interpreting luminescence data from a portable OSL reader: three case studies in fluvial settings , 2011 .

[191]  Edward J. Rhodes,et al.  Optically Stimulated Luminescence Dating of Sediments over the Past 200,000 Years , 2011 .

[192]  G. Guérin,et al.  Determining gamma dose rates by field gamma spectroscopy in sedimentary media: Results of Monte Carlo simulations , 2011 .

[193]  Alexander R. Simms,et al.  A new approach to reconstructing sea levels in Antarctica using optically stimulated luminescence of cobble surfaces , 2011 .

[194]  V. Usik,et al.  The Southern Route “Out of Africa”: Evidence for an Early Expansion of Modern Humans into Arabia , 2011, Science.

[195]  J. Foulkes I. Introduction , 2010, New Surveys in the Classics.

[196]  J. Wallinga,et al.  Selection of integration time intervals for quartz OSL decay curves , 2010 .

[197]  Jie Chen,et al.  OSL and AMS Dating of the Penultimate Earthquake at the Leigu Trench along the Beichuan Fault, Longmen Shan, in the Northeast Margin of the Tibetan Plateau , 2010 .

[198]  A. Wintle,et al.  Investigating quartz optically stimulated luminescence dose–response curves at high doses , 2010 .

[199]  J. Wallinga,et al.  Optical dating of fluvio-deltaic clastic lake-fill sediments - A feasibility study in the Holocene Rhine delta (western Netherlands) , 2010 .

[200]  D. Richter,et al.  Environmental gamma dosimetry with OSL of alpha-Al(2)O(3):C for in situ sediment measurements. , 2010, Radiation protection dosimetry.

[201]  J. Braun,et al.  Uniform erosion rates and relief amplitude during glacial cycles in the Southern Alps of New Zealand, as revealed from OSL-thermochronology , 2010 .

[202]  C. Ankjærgaard,et al.  Optically stimulated phosphorescence in quartz over the millisecond to second time scale: insights into the role of shallow traps in delaying luminescent recombination , 2010 .

[203]  Per Christian Hansen,et al.  Towards multi-exponential analysis in optically stimulated luminescence , 2010 .

[204]  P. Guibert,et al.  An intercomparison study of luminescence dating protocols and techniques applied to medieval brick samples from Normandy (France) , 2010 .

[205]  António A. Martins,et al.  Optical dating of clastic deposits generated by an extreme marine coastal flood: the 1755 tsunami deposits in the Algarve (Portugal) , 2010 .

[206]  Liping Zhou,et al.  Optical dating of a hyperconcentrated flow deposit on a Yellow River terrace in Hukou, Shaanxi, China , 2010 .

[207]  D. Sanderson,et al.  Using simple portable OSL measurements and laboratory characterisation to help understand complex and heterogeneous sediment sequences for luminescence dating , 2010 .

[208]  M. Bateman,et al.  The source of De variability in periglacial sand wedges: Depositional processes versus measurement issues , 2010 .

[209]  M. Bateman,et al.  Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean , 2010, Nature.

[210]  Liping Zhou,et al.  An analysis of the components of the luminescence signals of selected polymineral and quartz samples from loess in western China and southern Tajikistan, and their suitability for optical dating , 2010 .

[211]  G. Susino,et al.  Optical dating and lithic microwaste—Archaeological applications , 2010 .

[212]  J. Pang,et al.  Extraordinary Floods of 4100−4000 a BP recorded at the Late Neolithic Ruins in the Jinghe River Gorges, Middle Reach of the Yellow River, China , 2010 .

[213]  A. Murray,et al.  High resolution OSL dating back to MIS 5e in the central Sea of Okhotsk , 2010 .

[214]  K. Thomsen,et al.  Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry , 2010 .

[215]  Zhongping Lai Chronology and the upper dating limit for loess samples from Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol , 2010 .

[216]  R. Nielsen,et al.  Ancient DNA reveals late survival of mammoth and horse in interior Alaska , 2009, Proceedings of the National Academy of Sciences.

[217]  R. Chiverrell,et al.  Luminescence dating of glaciofluvial deposits: A review , 2009 .

[218]  M. Martini,et al.  Quartz as a natural luminescence dosimeter , 2009 .

[219]  G. Palomaki,et al.  Sources of Variability , 2009 .

[220]  A. Lang,et al.  Luminescence dating of hillslope deposits - a review. , 2009 .

[221]  A. Wintle,et al.  A chronology of hurricane landfalls at Little Sippewissett Marsh, Massachusetts, USA, using optical dating , 2009 .

[222]  R. Galbraith,et al.  A revised burial dose estimation procedure for optical dating of young and modern-age sediments , 2009 .

[223]  A. Murray,et al.  Optically stimulated luminescence dating of young sediments: A review , 2009 .

[224]  Sacha C. Jones,et al.  Population increase and environmental deterioration correspond with microlithic innovations in South Asia ca. 35,000 years ago , 2009, Proceedings of the National Academy of Sciences.

[225]  L. Arnold,et al.  Stochastic modelling of multi-grain equivalent dose (De) distributions: implications for OSL dating of sediment mixtures , 2009 .

[226]  Liping Zhou,et al.  Stepped-irradiation SAR: A viable approach to circumvent OSL equivalent dose underestimation in last glacial loess of northwestern China , 2009 .

[227]  M. Jain Extending the dose range: Probing deep traps in quartz with 3.06 eV photons , 2009 .

[228]  Y. S. Mayya,et al.  Extending the maximum age achievable in the luminescence dating of sediments using large quartz grains: A feasibility study , 2009 .

[229]  E. Paulissen,et al.  Late Weichselian and Holocene earthquake events along the Geleen fault in NE Belgium: OSL age constraints , 2009 .

[230]  P. Guibert,et al.  The importance of U-series disequilibrium of sediments in luminescence dating: A case study at the Roc de Marsal Cave (Dordogne, France) , 2009 .

[231]  A. Murray,et al.  Optical dating of relict sand wedges and composite‐wedge pseudomorphs in Flanders, Belgium , 2009 .

[232]  C. Ramsey,et al.  Optically stimulated luminescence dating of single and multiple grains of quartz from perennially frozen loess in western Yukon Territory, Canada: Comparison with radiocarbon chronologies for the late Pleistocene Dawson tephra , 2008 .

[233]  T. Pietsch,et al.  Fluvial transport as a natural luminescence sensitiser of quartz , 2008 .

[234]  A. Wintle Luminescence dating: where it has been and where it is going , 2008 .

[235]  L. Owen,et al.  Luminescence dating of glacial and associated sediments: review, recommendations and future directions , 2008 .

[236]  G. Duller Single‐grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating , 2008 .

[237]  M. Houmark‐Nielsen Testing OSL failures against a regional Weichselian glaciation chronology from southern Scandinavia , 2008 .

[238]  N. Porat,et al.  Impact of luminescence dating on geomorphological and palaeoclimate research in drylands , 2008 .

[239]  T. Rittenour Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research , 2008 .

[240]  Z. Jacobs Luminescence chronologies for coastal and marine sediments , 2008 .

[241]  J. Feathers,et al.  Luminescence Dating of Monumental Stone Architecture at Chavín De Huántar, Perú , 2008 .

[242]  J. Rose,et al.  Age limits on Middle Pleistocene glacial sediments from OSL dating, north Norfolk, UK , 2008 .

[243]  Z. Jacobs,et al.  New ages for the post-Howiesons Poort late and final Middle Stone Age at Sibudu, South Africa , 2008 .

[244]  Z. Jacobs,et al.  Equivalent dose distributions from single grains of quartz at Sibudu, South Africa: context, causes and consequences for optical dating of archaeological deposits , 2008 .

[245]  P. Gibbard,et al.  Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500 , 2008, Quaternary International.

[246]  C. Ramsey Radiocarbon dating: revolutions in understanding , 2008 .

[247]  J. Kučera,et al.  On the internal radioactivity in quartz , 2008 .

[248]  M. Jain,et al.  The ultrafast OSL component in quartz: Origins and implications , 2008 .

[249]  D. Froese,et al.  Changing ideas on the identity and stratigraphic significance of the Sheep Creek tephra beds in Alaska and the Yukon Territory, northwestern North America , 2008 .

[250]  A. Murray,et al.  Minimizing feldspar OSL contamination in quartz UV-OSL using pulsed blue stimulation , 2008 .

[251]  A. Murray,et al.  Optical dating of Chinese loess using sand-sized quartz: Establishing a time frame for Late Pleistocene climate changes in the western part of the Chinese Loess Plateau , 2008 .

[252]  E. Willerslev,et al.  Optical dating of perennially frozen deposits associated with preserved ancient plant and animal DNA in north-central Siberia , 2008 .

[253]  D. J. Huntley,et al.  Thermoluminescence Dating of Late Pleistocene Sediments, St. Lawrence Lowland, Québec , 2007 .

[254]  C. Cosma,et al.  Luminescence Dating of Neolithic Ceramics from Lumea Nouă, Romania , 2007 .

[255]  G. Houbrechts,et al.  Residual Doses in Recent Alluvial Sediments From the Ardenne (S Belgium) , 2007 .

[256]  Z. Jacobs,et al.  Advances in optically stimulated luminescence dating of individual grains of quartz from archeological deposits , 2007 .

[257]  I. Bailiff METHODOLOGICAL DEVELOPMENTS IN THE LUMINESCENCE DATING OF BRICK FROM ENGLISH LATE-MEDIEVAL AND POST-MEDIEVAL BUILDINGS* , 2007 .

[258]  H. Brückner,et al.  Existence of a common growth curve for silt-sized quartz OSL of loess from different continents , 2007 .

[259]  David S. G. Thomas,et al.  Late Quaternary linear dune accumulation and chronostratigraphy of the southwestern Kalahari: implications for aeolian palaeoclimatic reconstructions and predictions of future dynamics , 2007 .

[260]  A. Murray,et al.  Optical Dating of Dune Ridges on Rømø, a Barrier Island in the Wadden Sea, Denmark , 2007 .

[261]  M. Chougaonkar,et al.  The pre-dose phenomenon in the OSL signal of quartz , 2007 .

[262]  Kevin White,et al.  Middle Paleolithic Assemblages from the Indian Subcontinent Before and After the Toba Super-Eruption , 2007, Science.

[263]  B. David,et al.  Sediment mixing at Nonda Rock: investigations of stratigraphic integrity at an early archaeological site in northern Australia and implications for the human colonisation of the continent , 2007 .

[264]  C. Stringer,et al.  82,000-year-old shell beads from North Africa and implications for the origins of modern human behavior , 2007, Proceedings of the National Academy of Sciences.

[265]  Ashok K. Singhvi,et al.  White Sands Dune Field, New Mexico: Age, dune dynamics and recent accumulations , 2007 .

[266]  A. Murray,et al.  Total beta and gamma dose rates in trapped charge dating based on beta counting , 2007 .

[267]  Jakob Wallinga,et al.  A modified SAR protocol for optical dating of individual grains from young quartz samples , 2007 .

[268]  A. Murray,et al.  Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz , 2007 .

[269]  C. McKay,et al.  Paleoecology reconstruction from trapped gases in a fulgurite from the late Pleistocene of the Libyan Desert , 2007 .

[270]  J. Hellstrom,et al.  An arid-adapted middle Pleistocene vertebrate fauna from south-central Australia , 2007, Nature.

[271]  B. Elberling,et al.  Optically stimulated luminescence dating of a Holocene beach ridge plain in Northern Jutland, Denmark , 2006 .

[272]  David S. G. Thomas,et al.  Sedimentation and diagenesis of Chinese loess: Implications for the preservation of continuous, high-resolution climate records , 2006 .

[273]  L. Arnold,et al.  Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose , 2006 .

[274]  N. Porat,et al.  Dating the Ramat Saharonim Late Neolithic desert cult site , 2006 .

[275]  Z. Jacobs,et al.  Extending the chronology of deposits at Blombos Cave, South Africa, back to 140 ka using optical dating of single and multiple grains of quartz. , 2006, Journal of human evolution.

[276]  Ann G. Wintle,et al.  Locating the boundary between the Pleistocene and the Holocene in Chinese loess using luminescence , 2006 .

[277]  A. Murray,et al.  Thermal pre-treatment in the OSL dating of quartz: is it necessary? , 2006, Radiation protection dosimetry.

[278]  Y. S. Mayya,et al.  Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution , 2006 .

[279]  E. Rhodes,et al.  Luminescence dating of sand deposits related to late Pleistocene human occupation at the Cactus Hill Site, Virginia, USA , 2006 .

[280]  A. Murray,et al.  Application of pulsed OSL to the separation of the luminescence components from a mixed quartz/feldspar sample , 2006 .

[281]  K. Kjær,et al.  Optically Stimulated Luminescence (OSL) dating of glacial sediments from Arctic Russia ‐ depositional bleaching and methodological aspects , 2006 .

[282]  A. Murray,et al.  Stability of the quartz fast-component in insensitive samples , 2006 .

[283]  S. Stokes,et al.  Holocene slip-rate on the Sabzevar thrust fault, NE Iran, determined using optically stimulated luminescence (OSL) , 2006 .

[284]  A. Wintle,et al.  Recuperated OSL dating of fine-grained quartz in Chinese loess , 2006 .

[285]  L. Thomas,et al.  Uranium-series dating applications in natural environmental science , 2006 .

[286]  G. Duller,et al.  De determination for young samples using the standardised OSL response of coarse-grain quartz , 2006 .

[287]  G. Wagner,et al.  Optical dating of granitic stone surfaces , 2005 .

[288]  A. Murray,et al.  A single-aliquot regenerative-dose method based on IR (1.49 eV) bleaching of the fast OSL component in quartz , 2005 .

[289]  A. Murray,et al.  Optically stimulated luminescence dating of young estuarine sediments: a comparison with 210Pb and 137Cs dating , 2005 .

[290]  K. Curry,et al.  Comparative Study of Sand Porosity and a Technique for Determining Porosity of Undisturbed Marine Sediment , 2004 .

[291]  L. Fifield,et al.  Optical Dating of Deep-Sea Sediments using Single Grains of Quartz: a Comparison with Radiocarbon , 2004 .

[292]  Martin Jakobsson,et al.  Late quaternary ice sheet history of northern Eurasia , 2004 .

[293]  G. Duller,et al.  Standardised growth curves for optical dating of sediment using multiple-grain aliquots , 2004 .

[294]  J. Singarayer,et al.  Component-resolved bleaching spectra of quartz optically stimulated luminescence: preliminary results and implications for dating , 2004 .

[295]  A. Murray,et al.  Exploring the method of optical dating and comparison of optical and 14C ages of Late Weichselian coversands in the southern Netherlands , 2004 .

[296]  P. Srivastava,et al.  Luminescence chronometry and Late Quaternary geomorphic history of the Ganga Plain, India , 2003 .

[297]  A. Murray,et al.  The single aliquot regenerative dose protocol: potential for improvements in reliability , 2003 .

[298]  A. Murray,et al.  A mini X-ray generator as an alternative to a 90Sr/90Y beta source in luminescence dating , 2003 .

[299]  A. Murray,et al.  Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation , 2003 .

[300]  G. Duller,et al.  Combined gamma and beta dosimetry, using Al2O3:C, for in situ measurements on a sequence of archaeological deposits , 2003 .

[301]  A. Murray,et al.  Characterisation of blue-light stimulated luminescence components in different quartz samples: implications for dose measurement , 2003 .

[302]  A. Murray,et al.  Combining infrared- and green-laser stimulation sources in single-grain luminescence measurements of feldspar and quartz , 2003 .

[303]  A. Murray,et al.  The resolution of stratigraphic inconsistency in the luminescence ages of marine terrace sediments from Korea , 2003 .

[304]  A. Murray,et al.  Optically stimulated luminescence dating of a Danish Eemian coastal marine deposit: a test of accuracy , 2003 .

[305]  A. Wintle,et al.  Unprecedented last-glacial mass accumulation rates determined by luminescence dating of loess from western Nebraska , 2003, Quaternary Research.

[306]  Yue‐Gau Chen,et al.  Luminescence dating of neotectonic activity on the southwestern coastal plain, Taiwan , 2003 .

[307]  C. Frederick,et al.  Investigations into the potential effects of pedoturbation on luminescence dating , 2003 .

[308]  A. Murray,et al.  Determination of slip rate by optical dating of fluvial deposits from the Wangsan fault, SE Korea , 2003 .

[309]  S. Stokes,et al.  Alternative chronologies for Late Quaternary (Last Interglacial–Holocene) deep sea sediments via optical dating of silt-sized quartz , 2003 .

[310]  G. Duller Distinguishing quartz and feldspar in single grain luminescence measurements , 2003 .

[311]  N. Spooner,et al.  New ages for human occupation and climatic change at Lake Mungo, Australia , 2003, Nature.

[312]  J. Wallinga Optically stimulated luminescence dating of fluvial deposits: a review , 2002 .

[313]  Sheng‐Hua Li Luminescence sensitivity changes of quartz by bleaching, annealing and UV exposure , 2002 .

[314]  C. Batt,et al.  The potential for dating the Old Scatness site, Shetland, by optically stimulated luminescence , 2001 .

[315]  F. Phillips,et al.  Terrestrial in situ cosmogenic nuclides: theory and application , 2001 .

[316]  G. Laslett,et al.  New Ages for the Last Australian Megafauna: Continent-Wide Extinction About 46,000 Years Ago , 2001, Science.

[317]  A. Wintle,et al.  Holocene sediment-accumulation rates in the western Loess Plateau, China, and a 2500-year record of agricultural activity, revealed by OSL dating , 2001 .

[318]  R. Wasson,et al.  Luminescence chronology of river adjustment and incision of Quaternary sediments in the alluvial plain of the Sabarmati River, north Gujarat, India , 2001 .

[319]  R. Bailey Towards a general kinetic model for optically and thermally stimulated luminescence of quartz , 2001 .

[320]  A. Murray,et al.  Equivalent dose estimation using a single aliquot of polymineral fine grains , 2001 .

[321]  E. Rhodes Observations of thermal transfer OSL signals in glacigenic quartz , 2000 .

[322]  A. Murray,et al.  Optical dating of single sand-sized grains of quartz : sources of variability , 2000 .

[323]  A. Murray,et al.  Optically stimulated luminescence from quartz measured using the linear modulation technique , 2000 .

[324]  A. Murray,et al.  Quartz OSL: Effects of thermal treatment and their relevance to laboratory dating procedures , 2000 .

[325]  A. Murray,et al.  Advances in luminescence instrument systems , 2000 .

[326]  A. Singhvi,et al.  Sedimentary records and luminescence chronology of Late Holocene palaeofloods in the Luni River, Thar Desert, northwest India , 2000 .

[327]  A. Murray,et al.  Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol , 2000 .

[328]  A. Murray,et al.  Single grain laser luminescence (SGLL) measurements using a novel automated reader , 1999 .

[329]  G. Laslett,et al.  OPTICAL DATING OF SINGLE AND MULTIPLE GRAINS OF QUARTZ FROM JINMIUM ROCK SHELTER, NORTHERN AUSTRALIA: PART I, EXPERIMENTAL DESIGN AND STATISTICAL MODELS* , 1999 .

[330]  A. Murray,et al.  Blue Light Emitting Diodes for Optical Stimulation of Quartz in Retrospective Dosimetry and Dating , 1999 .

[331]  G. Caitcheon,et al.  The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence , 1999 .

[332]  A. Murray,et al.  Isothermal decay of optically stimulated luminescence in quartz , 1999 .

[333]  A. Murray,et al.  Luminescence sensitivity changes in quartz , 1999 .

[334]  G. Caitcheon,et al.  The distribution of apparent dose as determined by Optically Stimulated Luminescence in small aliquots of fluvial quartz: Implications for dating young sediments , 1998 .

[335]  Edward J. Rhodes,et al.  Relic permafrost structures in the Gobi of Mongolia: age and significance , 1998 .

[336]  P. Guibert,et al.  A new method for gamma dose-rate estimation of heterogeneous media in TL dating , 1998 .

[337]  M. Aitken,et al.  An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence , 1998 .

[338]  G. Laslett,et al.  Optical and radiocarbon dating at Jinmium rock shelter in northern Australia , 1998, Nature.

[339]  Gary L. Stringer,et al.  A mound complex in Louisiana at 5400-5000 years before the present , 1997 .

[340]  A. Murray,et al.  The relationship between quartz thermoluminescence, photo-transferred thermoluminescence, and optically stimulated luminescence , 1997 .

[341]  Rhys Jones,et al.  Luminescence dating of rock art and past environments using mud-wasp nests in northern Australia , 1997, Nature.

[342]  A. Murray,et al.  Equivalent dose measurement using a single aliquot of quartz , 1997 .

[343]  A. Murray,et al.  Disequilibria in the uranium decay series in sedimentary deposits at Allen's cave, nullarbor plain, Australia: Implications for dose rate determinations , 1997 .

[344]  S. McKeever,et al.  Al2O3:C as a sensitive OSL dosemeter for rapid assessment of environmental photon dose rates , 1997 .

[345]  Enver Bulur,et al.  An alternative technique for optically stimulated luminescence (OSL) experiment , 1996 .

[346]  D. J. Huntley,et al.  Deep traps in quartz and their use for optical dating , 1996 .

[347]  R. Ramesh,et al.  A luminescence method for dating ‘dirty’ pedogenic carbonates for paleoenvironmental reconstruction , 1996 .

[348]  A. Murray Developments in optically stimulated luminescence and photo-transferred thermoluminescence dating of young sediments: Application to a 2000-year sequence of flood deposits , 1996 .

[349]  S. McKeever,et al.  Luminescence sensitivity changes in quartz as a result of annealing , 1995 .

[350]  D. Godfrey-Smith Thermal effects in the optically stimulated luminescence of quartz and mixed feldspars from sediments , 1994 .

[351]  J. Prescott,et al.  Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations , 1994 .

[352]  N. Spooner On the optical dating signal from quartz , 1994 .

[353]  B. Smith,et al.  Charge movements in quartz and their relevance to optical dating , 1994 .

[354]  N. Sturchio Uranium-series disequilibrium: Applications to Earth, Marine, and environmental sciences , 1993 .

[355]  G. Duller,et al.  A new system for measuring optically stimulated luminescence from quartz samples , 1992 .

[356]  A. Singhvi,et al.  Thermoluminescence dating of archaeological sediments , 1989, The Science of Nature.

[357]  A. Singhvi,et al.  Thermoluminescence dating and its implications for the chronostratigraphy of loess-paleosol sequences in the Kashmir Valley (India) , 1987 .

[358]  A. Wintle Thermoluminescence dating of late Devensian loesses in southern England , 1981, Nature.

[359]  D. J. Huntley,et al.  Thermoluminescence dating of a deep-sea sediment core , 1979, Nature.

[360]  L. Løvborg,et al.  Response of 3″ × 3″ NaI(Tl) detectors to terrestrial gamma radiation , 1974 .

[361]  S. Fleming THE PRE-DOSE TECHNIQUE: A NEW THERMO-LUMINESCENT DATING METHOD , 1973 .

[362]  D. Zimmerman THERMOLUMINESCENT DATING USING FINE GRAINS FROM POTTERY , 1971 .

[363]  H. M. Enzensberger A note of Caution , 1942, Oral surgery, oral medicine, oral pathology and oral radiology.

[364]  C. Aring,et al.  A CRITICAL REVIEW , 1939, Journal of neurology and psychiatry.

[365]  S. Simona,et al.  Luminescence properties of natural muscovite relevant to optical dating of contaminated quartz samples , 2018 .

[366]  test accuracy , 2018 .

[367]  J. Buylaerta,et al.  Measurement of natural radioactivity: Calibration and performance of a high-resolution gamma spectrometry facility , 2018 .

[368]  M. Meyera,et al.  OSL surface exposure dating of a lithic quarry in Tibet: Laboratory validation and application , 2018 .

[369]  David Brink,et al.  : A Review of the , 2018 .

[370]  A. Medialdea,et al.  Re-examination of common extraction and purification methods of quartz and feldspar for luminescence dating , 2015 .

[371]  C. Murray-Wallace,et al.  Depositional history and archaeology of the central Lake Mungo lunette, Willandra Lakes, southeast Australia , 2014 .

[372]  A. Henten,et al.  Case study: Denmark , 2014 .

[373]  Z. Dong,et al.  R package numOSL: numeric routines for optically stimulated luminescence dating , 2013 .

[374]  L. Arnold,et al.  Portable gamma spectrometry with cerium-doped lanthanum bromide scintillators: Suitability assessments for luminescence and electron spin resonance dating applications , 2012 .

[375]  Norbert Mercier,et al.  Dose-rate conversion factors: update , 2011 .

[376]  F. Preusser,et al.  Potential of Autoradiography to Detect Spatially Resolved Radiation Patterns in the Context of Trapped Charge Dating , 2009 .

[377]  G. Guérin,et al.  The Clermont radiometric reference rocks: a convenient tool for dosimetric purposes , 2009 .

[378]  B. Mauz,et al.  On the dose-rate estimate of carbonate-rich sediments for trapped charge dating , 2008 .

[379]  C. Frederick,et al.  Detecting post-depositional sediment disturbance in sandy deposits using optical luminescence , 2007 .

[380]  G. Tucker,et al.  Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits , 2007 .

[381]  A. Murray,et al.  Luminescence dating of old (>70 ka) Chinese loess: A comparison of single-aliquot OSL and IRSL techniques , 2007 .

[382]  David S. G. Thomas,et al.  Reinterpreting climate proxy records from late Quaternary Chinese loess : A detailed OSL investigation , 2007 .

[383]  A. Murray,et al.  OSL chronology for a sediment core from the southern Baltic Sea: A continuous sedimentation record since deglaciation , 2007 .

[384]  N. Porat,et al.  Possible resetting of quartz OSL signals during earthquakes—Evidence from late Pleistocene injection dikes, Dead Sea basin, Israel , 2007 .

[385]  Y. Lua,et al.  Recuperated OSL dating of fine-grained quartz in Chinese loess , 2006 .

[386]  Lars Bøtter-Jensen,et al.  Sources of variability in OSL dose measurements using single grains of quartz , 2005 .

[387]  A. Murray,et al.  Optically stimulated luminescence dating: How significant is incomplete light exposure in fluvial environments? , 2004 .

[388]  A. G. Castanedo Neandertales cantábricos: estado de la cuestión , 2004 .

[389]  J. M. Olleya,et al.  Optical dating of deep-sea sediments using single grains of quartz : a comparison with radiocarbon , 2004 .

[390]  Simon Turner,et al.  Uranium-series geochemistry , 2003 .

[391]  R. Andersond,et al.  Alternative chronologies for Late Quaternary ( Last Interglacial – Holocene ) deep sea sediments via optical dating of silt-sized quartz , 2003 .

[392]  Y. Chena,et al.  Luminescence dating of neotectonic activity on the southwestern coastal plain , Taiwan , 2003 .

[393]  A. Heimsath,et al.  Creeping soil , 2002 .

[394]  K. Pande,et al.  TOWARDS A DIRECT DATING OF FAULT GOUGES USING LUMINESCENCE DATING TECHNIQUES : METHODOLOGICAL ASPECTS , 1999 .

[395]  R. Walter Potassium-Argon/Argon-Argon Dating Methods , 1997 .

[396]  J. Thiede Quaternary Environment of the Eurasian North (QUEEN) , 1996 .

[397]  A. Murray,et al.  The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments , 1996 .

[398]  J. Heinemeier,et al.  Radiocarbon Dating of Shells and Foraminifera from the Skagen Core, Denmark: Evidence of Reworking , 1995, Radiocarbon.

[399]  M. Lamothe,et al.  Comparison of TL and IRSL age estimates of feldspar coarse grains from waterlain sediments , 1994 .

[400]  A. Lang Infra-red stimulated luminescence dating of holocene reworked silty sediments , 1994 .

[401]  S. Edwards Luminescence dating of sand from the Kelso Dunes, California , 1993, Geological Society, London, Special Publications.

[402]  Sheng‐Hua Li,et al.  Luminescence dating of colluvial deposts from Natal, South Africa , 1993 .

[403]  Paul F. Green,et al.  Estimating the component ages in a finite mixture , 1990 .

[404]  D. Godfrey-Smith,et al.  Optical dating studies of quartz and feldspar sediment extracts , 1988 .

[405]  G. Hütt,et al.  Optical dating: K-feldspars optical response stimulation spectra , 1988 .

[406]  Robin P. Fawcett,et al.  Theory and application , 1988 .

[407]  M. L. W. Thewalt,et al.  Optical dating of sediments , 1985, Nature.

[408]  C. C. Giri,et al.  Luminescence studies on the sediments laid down by the December 2004 tsunami event : Prospects for the dating of palaeo tsunamis and for the estimation of sediment fluxes , 2022 .