Threshold reduction and yield improvement of semiconductor nanowire lasers via processing-related end-facet optimization

For nanowire lasers, end-facets matter; a rigorous statistical study demonstrates that short ultrasound or PDMA transfer provides optimized lasing performance.

[1]  N. Dasgupta,et al.  25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications , 2014, Advanced materials.

[2]  M. Grundmann,et al.  Low-order optical whispering-gallery modes in hexagonal nanocavities (11 pages) , 2005 .

[3]  Wade C. Driscoll,et al.  Robustness of the ANOVA and Tukey-Kramer statistical tests , 1996 .

[4]  Chennupati Jagadish,et al.  Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers. , 2016, Nano letters.

[5]  H. Tan,et al.  Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.

[6]  Huiyun Liu,et al.  Toward electrically driven semiconductor nanowire lasers , 2019, Nanotechnology.

[7]  Chennupati Jagadish,et al.  Large-Scale Statistics for Threshold Optimization of Optically Pumped Nanowire Lasers. , 2017, Nano letters.

[8]  Richard A. Soref,et al.  Carrier-induced change in refractive index of InP, GaAs and InGaAsP , 1990 .

[9]  Limin Tong,et al.  Flexible integration of free-standing nanowires into silicon photonics , 2017, Nature Communications.

[10]  Hai Lu,et al.  Vertically Emitting Indium Phosphide Nanowire Lasers. , 2018, Nano letters.

[11]  M. Sawicki,et al.  Determining Curie temperature of (Ga,Mn)As samples based on electrical transport measurements: Low Curie temperature case , 2016, 1606.05132.

[12]  J. Mendoza-Álvarez,et al.  Refractive index dependence on free carriers for GaAs , 1980 .

[13]  D. Schwalm,et al.  Dissociative recombination and low-energy inelastic electron collisions of the helium dimer ion , 2005 .

[14]  L. Lauhon,et al.  Tuning Lasing Emission toward Long Wavelengths in GaAs-(In,Al)GaAs Core-Multishell Nanowires. , 2018, Nano letters.

[15]  A. Lemaître,et al.  Determination of n-Type Doping Level in Single GaAs Nanowires by Cathodoluminescence. , 2017, Nano letters.

[16]  Chennupati Jagadish,et al.  Optical Study of p-Doping in GaAs Nanowires for Low-Threshold and High-Yield Lasing. , 2018, Nano letters.

[17]  Y. Mai,et al.  Super Deformability and Young’s Modulus of GaAs Nanowires , 2011, Advanced materials.

[18]  M. Dawson,et al.  Novel nanoscale transfer printing technique for precise positioning of nanowire lasers , 2017 .

[19]  Carsten Ronning,et al.  Review on the dynamics of semiconductor nanowire lasers , 2018 .

[20]  I. Buyanova,et al.  Near-Infrared Lasing at 1 μm from a Dilute-Nitride-Based Multishell Nanowire. , 2019, Nano letters.

[21]  Michael Fernandez,et al.  Statistics, damned statistics and nanoscience - using data science to meet the challenge of nanomaterial complexity. , 2016, Nanoscale horizons.

[22]  G. Abstreiter,et al.  Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control , 2016 .

[23]  C. Soci,et al.  Nanowire Lasers , 2018, 1809.01328.

[24]  Gerhard Abstreiter,et al.  GaAs–AlGaAs core–shell nanowire lasers on silicon: invited review , 2017 .

[25]  Peidong Yang,et al.  Semiconductor nanowire: what's next? , 2010, Nano letters.

[26]  Limin Tong,et al.  Assembly of silica nanowires on silica aerogels for microphotonic devices. , 2005, Nano letters.

[27]  H. Tan,et al.  III–V semiconductor nanowires for optoelectronic device applications , 2011, 2013 International Conference on Microwave and Photonics (ICMAP).

[28]  Philippe Caroff,et al.  Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires , 2016, Nature Communications.

[29]  Chennupati Jagadish,et al.  Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. , 2009, Nano letters.

[30]  Dhruv Saxena,et al.  Highly Strained III–V–V Coaxial Nanowire Quantum Wells with Strong Carrier Confinement , 2019, ACS nano.