Problems in the comparison of theoretical and experimental hyperpolarizabilities

Frequently it is useful to compare experimental values of the hyperpolarizabilities β and γ with calculated values. It is also often helpful to compare experimental values of β obtained from dc‐electric field induced second harmonic generation (dc‐SHG) experiments, e.g., with values obtained using the solvatochromism method. In order to do this the hyperpolarizabilities must be defined using consistent conventions. In this paper, four commonly used conventions are discussed and simple factors for converting between them presented. In addition, the sum‐over‐states expression for the calculation of β and γ is described and its correct use in comparing with hyperpolarizabilities obtained using other experimental and theoretical techniques discussed. As an illustration of the consistent use of conventions, ab initio and semiempirical calculations on para‐nitroaniline are compared with experimental dc‐SHG values. This comparison highlights the difference between theoretical values of the hyperpolarizability wi...

[1]  J. Rice,et al.  Ab initio determination of the nonlinear optical properties of HCl , 1992 .

[2]  G. Maroulis Hyperpolarizability of H2O , 1991 .

[3]  D. M. Bishop,et al.  A perturbation method for calculating vibrational dynamic dipole polarizabilities and hyperpolarizabilities , 1991 .

[4]  Mark A. Ratner,et al.  Molecular and Macromolecular Nonlinear Optical Materials. Probing Architecture/Electronic Structure/Frequency Doubling Relationships via an SCF-LCAO MECI π Electron Formalism , 1988 .

[5]  A. F. Garito,et al.  Dispersion of the nonlinear second-order optical susceptibility of organic systems (A) , 1983 .

[6]  J. Ward,et al.  Measurements of nonlinear optical polarizabilities for twelve small molecules , 1979 .

[7]  P. Suppan,et al.  Anomalous spectroscopic shifts and the structure of 1,4-dioxan , 1967 .

[8]  James J. P. Stewart,et al.  A new procedure for calculating molecular polarizabilities; applications using MNDO , 1984 .

[9]  J. Ward,et al.  Measurements of nonlinear optical polarizabilities for some halogenated methanes: The role of bond-bond interactions , 1977 .

[10]  David J. Williams,et al.  Introduction to Nonlinear Optical Effects in Molecules and Polymers , 1991 .

[11]  Kenneth D. Singer,et al.  Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation , 1981 .

[12]  Joseph Zyss,et al.  Nonlinear optical properties of organic molecules and crystals , 1987 .

[13]  Julia E. Rice,et al.  The calculation of frequency‐dependent polarizabilities as pseudo‐energy derivatives , 1991 .

[14]  J. Oudar,et al.  Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment , 1977 .

[15]  Julia E. Rice,et al.  Solvent dependence of the second order hyperpolarizability in p-nitroaniline , 1992 .

[16]  R. Bartlett,et al.  Molecular hyperpolarizabilities. II. A correlated study ofH2O , 1981 .

[17]  S. K. Kurtz,et al.  Optical Nonlinear Susceptibilities: Accurate Relative Values for Quartz, Ammonium Dihydrogen Phosphate, and Potassium Dihydrogen Phosphate , 1970 .

[18]  Philippe Pretre,et al.  Second‐order polarizabilities of nitropyridine derivatives determined with electric‐field‐induced second‐harmonic generation and a solvatochromic method: A comparative study , 1992 .

[19]  Brian J. Orr,et al.  Perturbation theory of the non-linear optical polarization of an isolated system , 1971 .

[20]  N. Handy,et al.  The calculation of frequency‐dependent hyperpolarizabilities including electron correlation effects , 1992 .

[21]  K. Trueblood,et al.  A three-dimensional refinement of the crystal structure of 4-nitroaniline , 1961 .

[22]  D. M. Bishop,et al.  Molecular vibrational and rotational motion in static and dynamic electric fields , 1990 .

[23]  Carole Sentein,et al.  Comparison of hyperpolarizabilities obtained with different experimental methods and theoretical techniques , 1991 .

[24]  J. Ward,et al.  Measurements of second‐ and third‐order nonlinear polarizabilities for HF and HCl , 1985 .

[25]  James J. P. Stewart,et al.  Calculation of the nonlinear optical properties of molecules , 1990 .

[26]  Seth R. Marder,et al.  Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives , 1991 .

[27]  R. Bartlett,et al.  Hyperpolarizabilities of the hydrogen fluoride molecule: A discrepancy between theory and experiment? , 1986 .

[28]  D. D. Yue,et al.  Theory of Electric Polarization , 1974 .

[29]  M. Dupuis,et al.  Nonlinear optical properties of organic solids: ab initio polarizability and hyperpolarizabilities of nitroaniline derivatives , 1990 .

[30]  Gary C. Bjorklund,et al.  A solvatochromic method for determining second-order polarizabilities of organic molecules , 1989 .

[31]  M. Ratner,et al.  Nonlinear optical phenomena in conjugated organic chromophores. Theoretical investigations via a π-electron formalism , 1992 .

[32]  Robert L. Byer,et al.  Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB/sub 2/O/sub 4/, LiIO/sub 3/, MgO:LiNbO/sub 3/, and KTP measured by phase-matched second-harmonic generation , 1990 .

[33]  Michael C. Zerner,et al.  Triplet states via intermediate neglect of differential overlap: Benzene, pyridine and the diazines , 1976 .

[34]  James J. P. Stewart,et al.  MOPAC: A semiempirical molecular orbital program , 1990, J. Comput. Aided Mol. Des..

[35]  D. A. Kleinman,et al.  Nonlinear Dielectric Polarization in Optical Media , 1962 .

[36]  David J. Williams,et al.  New sulfonyl-containing materials for nonlinear optics: semiempirical calculations, synthesis, and properties , 1990 .