C6ORF192 Forms a Unique Evolutionary Branch Among Solute Carriers (SLC16, SLC17, and SLC18) and Is Abundantly Expressed in Several Brain Regions

[1]  H. Schiöth,et al.  The solute carrier (SLC) complement of the human genome: Phylogenetic classification reveals four major families , 2008, FEBS letters.

[2]  Da-Neng Wang,et al.  Ins and outs of major facilitator superfamily antiporters. , 2008, Annual review of microbiology.

[3]  Robert Fredriksson,et al.  Identification of six putative human transporters with structural similarity to the drug transporter SLC22 family. , 2007, Genomics.

[4]  R. Reimer,et al.  Membrane topology of the Drosophila vesicular glutamate transporter , 2007, Journal of neurochemistry.

[5]  M. Schäfer,et al.  Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat , 2007, Journal of Molecular Neuroscience.

[6]  Robert Fredriksson,et al.  Fourteen novel human members of mitochondrial solute carrier family 25 (SLC25) widely expressed in the central nervous system. , 2006, Genomics.

[7]  H. Schiöth,et al.  Increased mRNA levels of tyrosine hydroxylase and dopamine transporter in the VTA of male rats after chronic food restriction , 2006, The European journal of neuroscience.

[8]  R. Fredriksson,et al.  The repertoire of solute carriers of family 6: identification of new human and rodent genes. , 2005, Biochemical and biophysical research communications.

[9]  H. Schiöth,et al.  Differential regulation of nuclear receptors, neuropeptides and peptide hormones in the hypothalamus and pituitary of food restricted rats. , 2005, Brain research. Molecular brain research.

[10]  M. P. Cummings PHYLIP (Phylogeny Inference Package) , 2004 .

[11]  Geoffrey J. Barton,et al.  The Jalview Java alignment editor , 2004, Bioinform..

[12]  R. Reimer,et al.  Organic anion transport is the primary function of the SLC17/type I phosphate transporter family , 2004, Pflügers Archiv.

[13]  M. Schäfer,et al.  The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine , 2004, Pflügers Archiv.

[14]  D. Meredith,et al.  The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond , 2004, Pflügers Archiv.

[15]  Andreas Rolfs,et al.  The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins , 2004, Pflügers Archiv.

[16]  S. Vannucci,et al.  Developmental switch in brain nutrient transporter expression in the rat. , 2003, American journal of physiology. Endocrinology and metabolism.

[17]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[18]  A. Moorman,et al.  Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data , 2003, Neuroscience Letters.

[19]  M. Yaniv,et al.  Hepatocyte nuclear factor 1 alpha controls renal expression of the Npt1-Npt4 anionic transporter locus. , 2002, Journal of molecular biology.

[20]  L. Peltonen,et al.  Unraveling the molecular pathogenesis of free sialic acid storage disorders: altered targeting of mutant sialin. , 2002, Molecular genetics and metabolism.

[21]  B. Giros,et al.  A Third Vesicular Glutamate Transporter Expressed by Cholinergic and Serotoninergic Neurons , 2002, The Journal of Neuroscience.

[22]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[23]  F. Speleman,et al.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.

[24]  M H Saier,et al.  Phylogeny of multidrug transporters. , 2001, Seminars in cell & developmental biology.

[25]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[26]  T Hori,et al.  Molecular Cloning of a Novel Brain‐Type Na+‐Dependent Inorganic Phosphate Cotransporter , 2000, Journal of neurochemistry.

[27]  N. Price,et al.  The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. , 1999, The Biochemical journal.

[28]  S. Sugano,et al.  Isolation and chromosomal mapping of a novel human gene showing homology to Na+/PO4 cotransporter , 1999, Journal of Human Genetics.

[29]  L. Hersh,et al.  Mutational Analysis of Aspartate Residues in the Transmembrane Regions and Cytoplasmic Loops of Rat Vesicular Acetylcholine Transporter* , 1999, The Journal of Biological Chemistry.

[30]  Janet S. Duerr,et al.  The cat-1 Gene of Caenorhabditis elegansEncodes a Vesicular Monoamine Transporter Required for Specific Monoamine-Dependent Behaviors , 1999, The Journal of Neuroscience.

[31]  S. Hansson,et al.  Ontogeny of vesicular monoamine transporter mRNAs VMAT1 and VMAT2. I. The developing rat central nervous system. , 1998, Brain research. Developmental brain research.

[32]  S. Hansson,et al.  Ontogeny of vesicular monoamine transporter mRNAs VMAT1 and VMAT2. II. Expression in neural crest derivatives and their target sites in the rat. , 1998, Brain research. Developmental brain research.

[33]  L. Eiden The Cholinergic Gene Locus , 1998, Journal of neurochemistry.

[34]  P. Magistretti,et al.  Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  N. Philp,et al.  Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium. , 1997, Biochemical and biophysical research communications.

[36]  R. Edwards,et al.  Charged Residues in Transmembrane Domains II and XI of a Vesicular Monoamine Transporter Form a Charge Pair That Promotes High Affinity Substrate Recognition* , 1997, The Journal of Biological Chemistry.

[37]  C. Sansom,et al.  Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1). , 1996, The Biochemical journal.

[38]  Roderic D. M. Page,et al.  TreeView: an application to display phylogenetic trees on personal computers , 1996, Comput. Appl. Biosci..

[39]  S. Schuldiner,et al.  Modification of the pH Profile and Tetrabenazine Sensitivity of Rat VMAT1 by Replacement of Aspartate 404 with Glutamate* , 1996, The Journal of Biological Chemistry.

[40]  T. Bonner,et al.  Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Edwards,et al.  Identification of Residues Involved in Substrate Recognition by a Vesicular Monoamine Transporter (*) , 1995, The Journal of Biological Chemistry.

[42]  R. Edwards,et al.  Molecular cloning of a putative vesicular transporter for acetylcholine. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Paul,et al.  Cloning and expression of a cDNA encoding a brain-specific Na(+)-dependent inorganic phosphate cotransporter. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Saier,et al.  Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution , 1994, Microbiological reviews.

[45]  L. Eiden,et al.  Functional Identification and Molecular Cloning of a Human Brain Vesicle Monoamine Transporter , 1993, Journal of neurochemistry.

[46]  A. Alfonso,et al.  The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. , 1993, Science.

[47]  G. Rogers,et al.  Chapter 20: Acetylcholine transporter — vesamicol receptor pharmacology and structure , 1993 .

[48]  G. Rogers,et al.  Acetylcholine transporter--vesamicol receptor pharmacology and structure. , 1993, Progress in brain research.

[49]  M. Saier,et al.  A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. , 1993, Trends in biochemical sciences.

[50]  B. Hoffman,et al.  Expression cloning of a reserpine-sensitive vesicular monoamine transporter. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Eisenberg,et al.  A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter , 1992, Cell.

[52]  G. Semenza,et al.  Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.